Компьютерная грамотность, помощь и ремонт

Чем отличается рабочий ноль от нуля. Что такое фаза, ноль и земля? Зануление в розетках

Источниками электрических систем, устанавливаемых в домах и квартирах, выступают станции и генераторы, состоящие из трех обмоток и фазных проводников. Чтобы в процессе эксплуатации жилища не возникало проблем с использованием и обслуживанием электросети, нужно знать, что такое фаза, ноль и земля в электропроводке квартиры .

На рисунке ниже представлена схема расщепления трехфазной сети на однофазные.

Помимо 3-х фаз и 1 ноля кабель имеет еще и заземление , потому от подстанции к объектам подводится провод с пятью жилами. От общедомовых щитков на распределительные приборы отдельных квартир прокладывают однофазный ввод, имеющий фазу, ноль и заземление. За счет этого в сети мы имеем напряжение 220 В, а не изначальные 380 В. В процессе передачи электроэнергии участвует только два проводника – фаза и ноль, заземление имеет другую функцию, заключающуюся в обеспечении безопасности эксплуатации электросети в случае возникновения аварийных ситуаций – появления пробоев в изоляции или токов утечки.

В трехфазной цепи уровень напряжения между двумя любыми фазами составляет 380 В, между фазой и нолем – 220 В.

В общедомовом электрическом щите ноль и земля соединяются и подключаются к установленному контуру заземления. К распределительным щитам квартир эти проводники прокладываются отдельно. В этажных распределительных приборах ноль подключают к специальному контакту, а заземление соединяется с корпусом электрощитка.

В бытовых электросетях используется электрический переменный ток частотой 50 Гц. Он протекает между нулевым и фазным проводником, меняя свое направление 50 раз в секунду.

Ноль и фаза соединяются с точками потребления квартиры. Проводник , но через специальные контакты.

При работе с электрической сетью обязательно нужно помнить, что при соприкосновении фазы с телом человека, через организм пройдет электрический заряд, способный причинить существенный вред здоровью. Именно поэтому установка розеток и выключателей может производиться только при обесточивании линии электроснабжения в квартире.

Если к нулю подключено электрическое устройство с импульсным блоком питания, через нулевой проводник также может проходить электроток, хотя из-за низкого уровня напряжения он редко представляет опасность для человека.

Маркировка и определение фазы, ноля и земли

В электрических кабелях фазный, нулевой и заземлительный проводники имеют изоляцию разных цветов. Маркировка проводов требуется для обеспечения безопасности выполнения электромонтажных работ – прокладки электрических кабелей и установки точек потребления. Маркируются проводники согласно современным требованиям ПУЭ и ГОСТа.

Изоляция заземлительного проводника должна быть окрашена в желто-зеленый цвет. Некоторые производители выпускают кабели, в которых земля имеет чисто желтую или чисто зеленую окраску. Иногда изоляция заземления маркируется желто-зелеными полосами. На электрических схемах заземление обозначается латинскими буквами PE.

Нулевой проводник, именуемый также нейтралью, должен иметь изоляцию синего или светло-голубого цвета. На схемах ноль принято обозначать латинской буквой N.

Сложнее всего обстоят дела с фазным проводником. Различные производители для фазы используют изоляцию черного, белого, коричневого, серого, красного, оранжевого, бирюзового, розового или фиолетового цвета. Чаще всего встречаются черные, белые и коричневые проводники. Фазы обозначаются на схемах латинской буквой L. В сетях 380 В кабели имеют также числовое значение: L1, L2, L3.

Если по маркировке сложно определить тип проводника, всегда можно воспользоваться индикаторной отверткой . С ее помощью легко найти фазу и ноль в розетке или электрическом кабеле. При использовании индикаторов обязательно нужно помнить о технике безопасности.

Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как «ноль» и «фаза».

Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.

Выделяют три обозначения проводов:

  • заземление

Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» - «фазные провода», а под «заземлением» - «защитный ноль».

Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.

В реальности способов распознания проводов не так уж и много. А безопасных - еще меньше. Поэтому чаще всего определяют кабели по цвету.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.

Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это - рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Самостоятельное определение фазы и ноля при помощи подручных средств

Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.

Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор. Он сигнализирует о наличии сопротивления. Значит, проверяемый провод является фазным.

Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.

Метод определения фазы и ноля при помощи контрольной лампы

Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью.

Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой. Теперь для определения необходимо поочередно, по цветам присоединять провода.

Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух - фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод - фаза, а другой - ноль.

Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Невозможно дать определение фазе, рассматривая ее как отдельный элемент. Физические процессы, протекающие в сети, тесно взаимосвязаны с другими составляющими: фаза, ноль, земля невозможны без совокупности всех элементов. Поэтому рассматривать надо назначение всех составляющих и процессы, происходящие в них, понимая, что такое фаза и ноль, нагрузка и заземление.

Структура электросети, основные элементы

Из школьного курса физики известно, что если вращать постоянный магнит вокруг обмотки на катушке в проводах, возникает ЭДС (электро-движущая сила), которая перемещает заряженные частицы по проводам. Этот пример хорошо объясняет, что такое фаза и ноль в электричестве.

На основе этого принципа в промышленных масштабах создаются генераторы электрической энергии: это может быть атомная, гидро,- или тепловая электростанция. Иногда для обеспечения временного электроснабжения в аварийных случаях используют дизельные, газовые или бензиновые генераторы на объектах, которые потребляют незначительные мощности. В истории были случаи, когда атомные подлодки и ледоколы снабжали электроэнергией целые населенные пункты.

С генераторов электростанций электроэнергия по токопроводящим жилам кабелей или ЛЭП (воздушные линии электропередачи) с большим напряжением 6-10 кВ передается на понижающие до 04 кВ трансформаторные подстанции. С низкой стороны трансформатора энергия подается на распределительные щиты промышленных объектов, жилых домов и квартир в многоэтажных домах. Можно сказать, что фаза в электротехнике является транспортной системой для передачи электроэнергии. По этим токопроводящим жилам кабеля или ЛЭП происходит перемещение заряженных частиц со скоростью света к нагрузке.

Именно в кабеле жилы разделяют как фаза, ноль, земля. Промышленные электростанции передают к потребителям энергию по четырехжильным или пятижильным кабелям.

С трех отдельных обмоток генератора токи снимаются и протекают по разным жилам к нагрузке. Эти жилы в электрике называют фазами. Четвертая жила – нейтральный провод, который в конечном итоге в распределительных щитах, трансформаторных подстанциях и генераторах подключается к шине заземления. Такие схемы называются цепи с заземленной нейтралью. Фаза в электричестве – это токопроводящая часть, по которой заряженные частицы передвигаются от генератора к нагрузке. Чтобы понять, что такое ноль, или зачем нейтральная жила, можно сравнить электрический ток с потоком воды.

Протекающий поток с верхней точки вращает колесо своей кинетической энергией, совершая определенную работу, потом стекает в реку или озеро, которая находится ниже по уровню. В случае с электричеством поток заряженных частиц с высоким по отношению к земле потенциалом стремится по фазному проводу к нагрузке. Как пример можно взять лампу накаливания. Совершается работа на разогрев спирали лампы. После прохождения нагрузки по нейтральному проводу ток уходит в землю, фактически нулевой провод нужен для отвода тока в землю после совершения им определенной работы.

Пятая жила заземления обеспечивает безопасность эксплуатации электроустановок. Она, как и жила нуля, подключается к шинам заземления, которые замыкаются на общий заземляющий контур. Каждый корпус оборудования на производстве или бытового прибора заземляется, при замыкании фазного провода на корпус срабатывают устройства защиты, сеть обесточивается. Таким образом, исключается вариант поражения человека электрическим током. Отличие заземления и нулевого провода в том, что нулевую жилу подключают к контактам нагрузки, а заземляющий провод – к корпусу оборудования.

Определение фазы в электрических сетях

При монтаже, обслуживании и ремонтных работах иногда возникают проблемы, как отличить фазу от нулевого и заземляющего провода. На разных участках сети делается соответствующая маркировка.

На электростанциях, трансформаторных подстанциях и распределительных устройствах токопроводящие шины, к которым подключаются кабельные жилы, маркируются цветом и буквенными обозначениями:

  1. Фазы обозначают А – желтым цветом;
  2. В – зеленым цветом;
  3. С – красным цветом.

При такой маркировке фаза в электричестве легче определяется, нейтральная шина обозначается буквой «N» и красится в синий/голубой цвет. На шину заземления ставят соответствующий знак и желто-зеленый полосатый окрас.

По требованиям ПУЭ (Правила устройства электроустановок) кабельные токопроводящие жилы тоже имеют маркировку по цвету изоляционного слоя. Синяя жила подключается к нейтральной шине, желто-зеленая – на контур заземления, красная, черная, белая и другие цвета могут использоваться в качестве фаз. Такую же маркировку используют при прокладке проводов с меньшим сечением в РЩ для розеточных и осветительных групп.

К сожалению, данные требования не всегда выполняются при проведении монтажных работ, особенно на участках от РУ до приборов освещения, розеток и отдельных бытовых приборов.

В условиях скрытой проводки визуально по концам на выходе кабеля у розетки невозможно определить назначение проводника, когда все или несколько жил имеют одинаковый цвет изоляции.

В этих случаях используются индикаторные и измерительные приборы, наиболее востребованными из них считаются индикаторная отвертка и мультиметр. Для определения фазного провода среди выходящих концов из подрозетника достаточно использовать индикаторную отвертку. Нужно прикоснуться пером отвертки к оголенному концу, а большим пальцем – к контакту на верхней части ручки отвертки. При наличии напряжения на проводе индикаторная лампочка в прозрачной рукоятке засветится.

Это классический вариант, когда отверткой определяется фаза тока в проводе. Производители делают много современных конструкций, где достаточно прикоснуться пером отвертки к изолированному проводу на любом участке, и световая и звуковая индикация укажет наличие напряжения. Но почему-то потребители предпочитают классические старые модели, они отличаются высокой надежностью, не требуют питания и замены батареек. Виды и конструкции индикаторных отверток – эта тема, которая требует более детального рассмотрения в отдельной статье. Между нейтральным и заземляющим проводом разница потенциалов равна нулю, напряжения нет, соответственно, индикатор не светится. Такой метод годится, когда надо выделить фазы среди проводов, выходящих из подрозетника или распределительной коробки, особенно, когда сеть однофазная для обычной розетки разность потенциалов между фазой и заземлением 220В.

В распределительных коробках на промышленных объектах, когда используется оборудование с трехфазным питанием на 380В, проводов может быть много и различного назначения. Жгуты с проводами различных цветов разводятся для питания электромоторов, управления магнитными пускателями и другими элементами оборудования на производстве. Чтобы среди множества проводов выделить разные фазы, недостаточно индикаторной отвертки, для этой цели потребуется мультиметр. В этом случае он используется в режиме измерений переменного напряжения на пределе 750V.

В трехфазной сети между разными фазами напряжение составляет 380В, между фазами и нулевым или заземляющим проводом – 220В. Прикладывая щупы к оголенным концам, отделяются провода, между которыми 380В, это отдельные фазы сети. Третья фаза вычисляется аналогично: если между уже выделенными концами и искомым проводом 380В, значит это она.

К сведению. Если в процессе измерения между двумя проводами, показывающими наличие фазы, напряжение 0В, эти концы исходят от одной фазы.

В результате изложенной информации можно сделать вывод, что такое фаза в однофазной сети. Это участок провода, идущий от РЩ до выключателя нагрузки, при исправной сети он находится постоянно под напряжением относительно нейтрального и заземляющего провода, после нагрузки идет нулевой провод. В трехфазной сети обмотки электродвигателей, нагревательные ТЭНы и другие приборы включаются между фазами. Провода до выключателя нагрузки постоянно находятся под напряжением, нулевой провод в схеме соединения обмоток звездой подключен в точке соединения трех обмоток на генераторе и после нагрузки. Для выключения и включения используются многополюсные автоматические выключатели или магнитные пускатели, которые разрывают цепь одновременно по трем фазам.

Видео

Которое называется электрическим током, обеспечивает комфортное существование современному человеку. Без него не работают производственные и строительные мощности, медицинские приборы в больницах, нет уюта в жилище, простаивает городской и междугородный транспорт. Но электричество является слугой человека только в случае полнейшего контроля, если же заряженные электроны смогут найти другой путь, то последствия окажутся плачевными. Для предупреждения непредсказуемых ситуаций применяют специальные меры, главное - понять, в чем разница. Заземление и зануление защищают человека от удара током.

Направленное движение электронов осуществляется по пути наименьшего сопротивления. Чтобы избежать прохождения тока через человеческое тело, ему предлагается другое направление с наименьшими потерями, которое обеспечивает заземление или зануление. В чем разница между ними, предстоит разобраться.

Заземление

Заземление представляет собой один проводник или составленную из них группу, находящуюся в соприкосновении с землей. С его помощью выполняется сброс поступающего на металлический корпус агрегатов напряжения по пути нулевого сопротивления, т.е. к земле.

Такое электрическое заземление и зануление электрооборудования в промышленности актуально и для бытовых приборов со стальными наружными частями. Прикосновение человека к корпусу холодильника или стиральной машины, оказавшегося под напряжением, не вызовет поражения электрическим током. С этой целью используются специальные розетки с заземляющим контактом.

Принцип работы УЗО

Для безопасной работы промышленного и бытового оборудования применяют , используют приборы автоматических дифференциальных выключателей. Их работа основана на сравнении входящего по фазному проводу электрического тока и выходящего из квартиры по нулевому проводнику.

Нормальный режим работы электрической цепи показывает одинаковые значения тока в названых участках, потоки направлены в противоположных направлениях. Для того чтобы они и далее уравновешивали свои действия, обеспечивали сбалансированную работу приборов, выполняют устройство и монтаж заземления и зануления.

Пробой в любом участке изоляции приводит к протеканию тока, направляющегося к земле, через поврежденное место с обходом рабочего нулевого проводника. В УЗО показывается дисбаланс силы тока, прибор автоматически выключает контакты и напряжение исчезает во всей рабочей схеме.

Для каждого отдельного эксплуатационного условия предусмотрены различные установки для отключения УЗО, обычно диапазон наладки составляет от 10 до 300 миллиампер. Устройство срабатывает быстро, время отключения составляет секунды.

Работа заземляющего устройства

Чтобы присоединить к корпусу бытового или промышленного оборудования применяется РЕ-проводник, который из щитка выводится по отдельной линии со специальным выходом. Конструкция обеспечивает соединение корпуса с землей, в чем и заключается назначение заземления. Отличие заземления от зануления состоит в том, что в начальный момент при подсоединении вилки к розетке рабочий ноль и фаза не коммутированы в оборудовании. Взаимодействие исчезает в последнюю минуту, когда размыкается контакт. Таким образом, заземление корпуса имеет надежное и постоянное действие.

Два пути устройства заземления

Системы защиты и отвода напряжения подразделяют на:

  • искусственные:
  • естественные.

Искусственные заземления предназначены непосредственно для защиты оборудования и человека. Для их устройства требуются горизонтальные и вертикальные стальные металлические продольные элементы (часто применяют трубы с диаметром до 5 см или уголки № 40 или № 60 длиной от 2,5 до 5 м). Тем самым отличается зануление и заземление. Разница состоит в том, что для выполнения качественного зануления требуется специалист.

Естественные заземлители используются в случае их ближайшего расположения рядом с объектом или жилым домом. В качестве защиты служат находящиеся в грунте трубопроводы, выполненные из металла. Нельзя использовать для защитной цели магистрали с горючими газами, жидкостями и тех трубопроводов, наружные стенки которых обработаны антикоррозионным покрытием.

Естественные объекты служат не только защите электроприборов, но и выполняют свое основное предназначение. К недостаткам такого подключения относится доступ к трубопроводам достаточного широкого круга лиц из соседних служб и ведомств, что создает опасность нарушения целостности соединения.

Зануление

Помимо заземления, в некоторых случаях используют зануление, нужно различать, в чем разница. Заземление и зануление отводят напряжение, только делают это разными способами. Второй метод является электрическим соединением корпуса, в нормальном состоянии не под напряжением, и выводом однофазного источника электричества, нулевым проводом генератора или трансформатора, источником постоянного тока в его средней точке. При занулении напряжение с корпуса сбрасывается на специальный распределительный щиток или трансформаторную будку.

Зануление используется в случаях непредвиденных скачков напряжения или пробоя изоляции корпуса промышленных или бытовых приборов. Происходит короткое замыкание, ведущее к перегоранию предохранителей и мгновенному автоматическому выключению, в этом заключается разница между заземлением и занулением.

Принцип зануления

Переменные трехфазные цепи используют нулевой проводник для различных целей. Для обеспечения электрической безопасности с его помощью получают эффект короткого замыкания и возникшего на корпусе напряжения с фазным потенциалом в критических ситуациях. При этом появляется ток, превышающий номинальный показатель автоматического выключателя и контакт прекращается.

Устройство зануления

Чем отличается заземление от зануления, видно и на примере подключения. Корпус отдельным проводом соединяется с нулем на Для этого в розетке соединяют третью жилу электрического кабеля с предусмотренной для этого клеммой в розетке. У этого метода есть недостаток, который заключается в том, что для автоматического отключения нужен ток, по размеру больший, чем заданные установки. Если в нормальном режиме отключающее устройство обеспечивает работу прибора с силой тока в 16 Ампер, то малые пробои тока продолжают утекать без отключения.

После этого становится понятно, какая разница между заземлением и занулением. Человеческое тело при воздействии силы тока в 50 миллиампер может не выдержать и наступит остановка сердца. Зануление от таких показателей тока может не защитить, так как его функция заключается в создании нагрузок, достаточных для отключения контактов.

Заземление и зануление, в чем разница?

Между этими двумя способами существуют отличия:

  • при заземлении избыточный ток и возникшее на корпусе напряжение отводятся непосредственно в землю, а при занулении сбрасываются на ноль в щитке;
  • заземление является более эффективным способам в вопросе защиты человека от поражения электрическим током;
  • при использовании заземления безопасность получается за счет резкого уменьшения напряжения, а применение зануления обеспечивает выключение участка линии, в которой случился пробой на корпус;
  • при выполнении зануления, чтобы правильно определить нулевые точки и выбрать метод защиты потребуется помощь специалиста электрика, а сделать заземление, собрать контур и углубить его в землю может любой домашний мастер-умелец.

Заземление является системой отвода напряжения через находящийся в земле треугольник из металлического профиля, сваренного в местах соединения. Правильно устроенный контур дает надежную защиту, но при этом должны соблюдаться все правила. В зависимости от требующегося эффекта выбирается заземление и зануление электроустановок. Отличие зануления в том, что все элементы прибора, которые в нормальном режиме не находятся под током, подсоединяются к нулевому проводу. Случайное касание фазы к зануленным деталям прибора приводит к резкому скачку тока и отключению оборудования.

Сопротивление нейтрального нулевого провода в любом случае меньше этого же показателя контура в земле, поэтому при занулении возникает короткое замыкание, которое в принципе невозможно при использовании земляного треугольника. После сравнения работы двух систем становится понятно, в чем разница. Заземление и зануление отличаются по способу защиты, так как велика вероятность отгорания со временем нейтрального провода, за чем нужно постоянно следить. Зануление применяется очень часто в многоэтажных домах, так как не всегда есть возможность устроить надежное и полноценное заземление.

Заземление не зависит от фазности приборов, тогда как для устройства зануления необходимы определенные условия подключения. В большинстве случаев первый способ превалирует на предприятиях, где по требованиям техники безопасности предусматривается повышенная безопасность. Но и в быту в последнее время часто устраивается контур для сброса возникающего излишнего напряжения непосредственно в землю, это является более безопасным методом.

Защита при заземлении касается непосредственно электрической цепи, после пробоя изоляции за счет перетекания тока в землю значительно снижается напряжение, но сеть продолжает действовать. При занулении полностью отключается участок линии.

Заземление в большинстве случаев используют в линиях с устроенной изолированной нейтралью в системах IT и ТТ в трехфазных сетях с напряжением до 1 тыс. вольт или свыше этого показателя для систем с нейтралью в любом режиме. Применение зануления рекомендовано для линий с заземленным глухо нейтральным проводом в сетях TN-C-S, TN-C, TN-S с имеющимися в наличии N, PE, PEN проводниками, это показывает в чем разница. Заземление и зануление, несмотря на отличия, являются системами защиты человека и приборов.

Полезные термины электротехники

Для понимания некоторых принципов, по которым выполняются защитные зануление, заземление и отключение следует знать определения:

Глухозаземленная нейтраль представляет собой нулевой провод от генератора или трансформатора, непосредственно подключенный к заземляющему контуру.

Ею может служить вывод от источника переменного тока в однофазной сети или полюсная точка источника постоянного тока в двухфазных магистралях, как и средний выход в трехфазных сетях постоянного напряжения.

Изолированная нейтраль представляет собой нулевой провод генератора или трансформатора, не соединенный с заземляющим контуром или контактирующий с ним через сильное поле сопротивления от сигнализационных устройств, защитных приборов, измерительных реле и других приспособлений.

Принятые обозначения в сети

Все электрические установки с присутствующими в них проводниками заземления и нулевыми проводами в обязательном порядке подлежат маркировке. Обозначения наносятся на шины в виде буквенного обозначения РЕ с переменно чередующимися поперечными или продольными одинаковыми полосками зеленого или желтого цвета. Нейтральные нулевые проводники маркируются голубой литерой N, так обозначается заземление и зануление. Описание для защитного и рабочего нуля заключается в проставлении буквенного обозначения PEN и окрашивании в голубой тон по всей протяженности с зелено-желтыми наконечниками.

Буквенные обозначения

Первые литеры в пояснении к системе обозначают выбранный характер заземляющего устройства:

  • Т - соединение источника питания непосредственно с землей;
  • I - все токоведущие детали изолированы от земли.

Вторая буква служит для описания токопроводящих частей относительно подсоединения к земле:

  • Т говорит об обязательном заземлении всех открытых деталей под напряжением, независимо от вида связи с грунтом;
  • N - обозначает, что защита открытых частей под током осуществляется через глухозаземленную нейтраль от источника питания непосредственно.

Буквы, стоящие через тире от N, сообщают о характере этой связи, определяют метод обустройства нулевого защитного и рабочего проводников:

  • S - защита РЕ нулевого и N-рабочего проводников выполнена раздельными проводами;
  • С - для защитного и рабочего нуля применяется один провод.

Виды защитных систем

Классификация систем является основной характеристикой, по которой устраивается защитное заземление и зануление. Общие технические сведения описаны в третьей части ГОСТ Р 50571.2-94. В соответствии с ней заземление выполняется по схемам IT, TN-C-S, TN-C, TN-S.

Система TN-C разработана в Германии в начале 20 века. В ней предусмотрено объединение в одном кабеле рабочего нулевого провода и РЕ-проводника. Недостатком является то, что при отгорании нуля или возникшем другом нарушении соединения на корпусах оборудования появляется напряжение. Несмотря на это система применяется в некоторых электрических установках до нашего времени.

Системы TN-C-S и TN-S разработаны взамен неудачной схемы заземления TN-C. Во второй схеме защиты два вида нулевых провода разделялись прямо от щитка, а контур являлся сложной металлической конструкцией. Эта схема получилась удачной, так как при отсоединении нулевого провода на кожухе электроустановки не появлялось линейное напряжение.

Система TN-C-S отличается тем, что разделение нулевых проводов выполняется не сразу от трансформатора, а примерно на середине магистрали. Это не было удачным решением, так как если обрыв нуля случится до точки разделения, то электрический ток на корпусе будет представлять угрозу для жизни.

Схема подсоединения по системе ТТ обеспечивает непосредственную связь деталей под напряжением с землей, при этом все открытые части электроустановки с присутствием тока связаны с грунтовым контуром через заземлитель, который не зависит от нейтрального провода генератора или трансформатора.

По системе IT выполняется защита агрегата, устраивается заземление и зануление. В чем разница такого подсоединения от предыдущей схемы? В этом случае передача излишнего напряжения с корпуса и открытых деталей происходит в землю, а нейтраль источника, изолированая от грунта, заземляется посредством приборов с большим сопротивлением. Эта схема устраивается в специальном электрическом оборудовании, в котором должна быть повышенная безопасность и стабильность, например, в лечебных учреждениях.

Виды систем зануления

Система зануления PNG является простой в конструкции, в ней нулевой и защитный проводники совмещаются на всей протяженности. Именно для совмещенного провода применяется указанная аббревиатура. К недостаткам относят повышенные требования к слаженному взаимодействию потенциалов и проводникового сечения. Система успешно используется для зануления асинхронных агрегатов.

Не разрешается выполнять защиту по такой схеме в групповых однофазных и распределительных сетях. Запрещается совмещение и замена функций нулевого и защитного кабелей в однофазной цепи постоянного тока. В них применяется дополнительный с маркировкой ПУЭ-7.

Есть более совершенная система зануления для электроустановок, питающихся от однофазной сети. В ней совмещенный общий проводник PEN присоединяется к в источнике тока. Разделение на N и РЕ проводники происходит в месте разветвления магистрали на однофазных потребителей, например, в подъездном щите многоквартирного жилища.

В заключение следует отметить, что защита потребителей от поражения током и порчи электрических бытовых приборов при скачках напряжения является главной задачей энергообеспечения. Чем отличается заземление от зануления, объясняется просто, понятие не требует специальных знаний. Но в любом случае меры по поддержанию безопасности бытовых электроприборов или промышленного оборудования должны осуществляться постоянно и на должном уровне.

В повседневной жизни человек очень часто встречается с электричеством. Более того, электрические приборы сопровождают нас каждый день. Помимо того, что мы постоянно пользуемся электрическим оборудованием, так еще и приходит время их поломки, следовательно, дальнейшей починки. И прежде чем приступить к работе с электричеством нужно, как минимум, знать теоретическую базу, не говоря уже о практике. Конечно, во избежание причинения вреда имуществу и вашему бесценному здоровью разумнее было бы обратиться за помощью к специалисту. Но если Вы хотите сами научиться понимать и разбираться в столь сложном деле как электричество, необходимо начать с самого главного.


Фаза и ноль – знакомые на слух, но чужие для понимания понятия

Данные понятия нередко встречались каждому человеку, и каждый предполагал, что это каким-то образом связано с электричеством. Знать и понимать, что такое «фаза» и «ноль» крайне необходимо, чтобы заниматься электромонтажными работами (например, самая простая установка светильника, бра или люстры). Перед тем, как прикоснуться к электричеству, необходимо обязательно восполнить все пробелы в знаниях. Понимать, что такое фаза и ноль нужно хотя бы для того, чтобы правильно подсоединить провода.

Существует три главных провода : фаза, ноль и заземление . Определить где и какой проводок можно при помощи подручных средств или по цвету. Специалисты различают провода с первого взгляда, а обычному человеку нужно времени побольше, особенно, если отсутствуют необходимые для этого приборы. На самом деле, способов распознавания кабелей не очень много, тем более безопасных. Именно поэтому чаще всего провода различают по цвету.

Цвет - главный ориентир при распознавании проводов

Самый простой и безопасный метод. Для того, чтобы правильно выделить фазу и ноль , нужно знать какой цвет чему принадлежит. Лучше всего найти достоверную информацию, где четко обозначены принятые в конкретной стране стандарты. Каждый проводок имеет свой определенный цвет, следовательно, найти ноль будет на так уж сложно. Все полученные при поиске информации знания пойдут на пользу и помогут быстро справиться с работой.

Данный метод очень актуален в новостройках, поскольку электропроводка протягивается квалифицированными специалистами, которые соблюдают все установленные стандарты. Например, в нашей стране в 2004 году был принят стандарт IEC 60446 , в котором регламентируются все процессы деления фазы, заземления, нуля по цвету.

Обязательно нужно учитывать следующее:

  • синий (сине-белый) цвет провода – рабочий ноль;
  • желто-зеленый цвет – защитный ноль;
  • иные цвета – фаза (красный, коричневый, белый, черный и др.).

Именно такие обозначения используются чаще всего. Если же проводка в Вашем доме плохая и старая и ее монтажом занимались непрофессионалы, то правильнее будет воспользоваться другими методами.



Поиск фазы и ноля подручными средствами

По мнению специалистов первоначально нужно найти фазу , чтобы облегчить дальнейшее определению. Данный метод возможно применять наряду с предыдущим.

Индикаторная отвертка – неотъемлемый инструмент в бытовом наборе любого домашнего умельца. Ее предназначение заключается как в проведении электромонтажных работ, так и в процессе обычной замены лампочек или при монтаже осветительных приборов.

Метод настолько простой, что справится с ним может абсолютно любой человек. В момент касания отверткой цветного провода под напряжением индикатор должен загореться. То есть, поступает сигнал о присутствии сопротивления, следовательно, исследуемый кабель – фаза .

Суть данного метода заключается в присутствии внутри отвертки лампочки и резистора. В момент замыкания электрической цепи сигнал загорается. Процедура проходит абсолютно безопасно для человека, поскольку в инструменте имеется сопротивление, которое понижает ток до минимума.

Контрольная лампа – еще один способ определения проводов

Данный способ применим для распознавания кабелей в трехпроводной сети. При использовании этого метода нужно быть очень осторожным и внимательным, поскольку подразумевается создание контрольной лампы.

Процесс заключается в следующем:

  • в патрон помещается обыкновенная лампа;
  • в клеммах располагаются провода без изоляции на концах;
  • поочередное присоединение проводов по цвету.

Если нет возможности создать подобную конструкцию, можно применить обычную настольную лампу с электрической вилкой. Нужно знать, что при таком методе можно определить лишь приблизительное присутствие среди проводов фазного. Сигнал контрольной лампы показывает, что с высокой вероятностью какой-то провод – ноль , а какой-то – фаза . Если свет не загорается, значит фазного провода среди исследуемых нет. Но может быть, что нет именно нулевого провода.

Таким образом, данный способ целесообразен в большей степени для того, чтобы определить правильность монтажа и рабочее состояние проводки.

Как определить сопротивление петли «фаза-ноль»

Периодическое проведение замеров сопротивления петли «фаза-ноль» гарантирует бесперебойную работу электроприборов и проверку автоматов. Это необходимо делать, поскольку самыми главными предпосылками поломок являются перегрузки электрических сетей и короткие замыкания. Именно замеры сопротивления позволяют избежать подобных ситуаций.

Немногие знают, что такое петля «фаза-ноль» , но понимать это крайне необходимо. Под этим понятием подразумевается обозначение контура, возникающего в итоге соединения нулевого провода, который располагается в заземленной нейтрали. Именно замыкание данной электросети и образует петлю.

Для измерения сопротивления в петле «фаза-ноль» существуют следующие методы:

  • падение напряжения в отключенной цепи;
  • падение напряжения при сопротивлении возрастающей нагрузки – самый часто используемый способ, поскольку выгодно отличается от других удобством, быстрым измерением, безопасностью;
  • использование специального прибора, который интерпретирует замыкание в цепи.

Похожие публикации