Компьютерная грамотность, помощь и ремонт

Структурная организация генома вируса. Наследственность и изменчивость вирусов Модификации, вызываемые хозяином

У вирусов роль хромосом выполняет нить нуклеиновой кислоты (ДНК или РНК), у одних она цельная, у других (грипп, рео- ареновирус) – фрагментированная. Отдель­ные участки нуклеиновой кислоты, ответственные (детерминирующие) за синтез определенного белка, получили название генов. Простейшие из известных вирусов содержат от трех до пяти генов (например, ДНК-содержащий вирус полиомы; у пикорнавирусов 6-8 генов). Однако у более сложного вируса (например, крупного бактериофага Т4) более 30 генов контролируют синтез белков оболочки и не менее 15 - синтез нуклеотидных предшественников; для размножения этого фага тре­буется участие примерно сотни генов.

Ген не является неделимым. У него имеются более мелкие участки (мутоны, реконы), несущие определенные функции. Как известно, ген является носителем одновременно трех свойств:

1) контролирует тот или иной признак организма (функция),

2) обменивается в скрещиваниях (рекомбинация) и

3) изменяется (мутация).

Понятие цистрон соответствует понятию ген - единице функции, т. е. соответствует инфор­мации об одном белке.

Синтез ферментов у вирусов закодирован в генах. Любой фермент (белок) может синтезироваться только в том слу­чае, если в нуклеиновой кислоте имеется соответствующий ген, кодирующий синтез данного фермента. Последовательность работы цистронов определяется индукцией или репрессией.

Под геномом вируса понимают совокупность всех генов данного вируса. У од­них вирусов геном образован одной молекулой нуклеиновой кислоты (ДНК или РНК), у других - несколькими молекулами (вирусы гриппа, рео- и аренавирусы).

Фенотип - это совокупность всех внешних и внутренних признаков и функции данного вируса. Генотип же определяется только структурой наследственного материала - ДНК или РНК, т. е. последовательностью нуй-леотидов в их молекулах или кодом белкового синтеза. Фенотип вируса не является его постоянным свойством. Генотип же - это постоянное свойство вируса, и меняется он в результате мутаций, происходящих в-геноме. Мутационные измене­ния в геноме вируса влекут за собой и изменения его фенотипа.

Способы увеличения информационной емкости вирусного генома. В отличие от полицистронных иРНК прокариотов иРНК эукариотов являются моноцистронными, т.е. реализуется принцип «один ген – одна молекула иРНК – один белок». Однако у некоторых клеточных иРНК и часто у вирусных иРНК этот принцип нарушается, и иРНК может направлять синтез двух полипептидов.



Способами увеличения информации являются:

1) двукратное считывание одной и той же иРНК, но с другого иницирующено кодона;

В составе иРНК обычно встречается несколько инициирующих кодонов. В составе иРНК обычно встречается несколько инициирующих кодонов. В соответствии с принятой в настоящее время гипотезой «сканирующей модели» малая рибосомальная субъединица связывается с иРНК около 5¢-конца и скользит вниз до встречи с инициирующим кодоном. Однако инициация в большинстве случаев происходит не с первого инициирующего кодона, а с последующего АУГ - кодонов. «Правильный» функционирующий АУГ- кодон узнается рибосомой благодаря окружающим его последовательностям («фланкирующим» нуклеотидам). В том случае, если первый инициирующий кодон находится в менее благоприятном окружении, чем последующие АУГ – кодоны, большинство малых рибосомальных субъединиц пройдут этот кодон и начнут инициацию трансляции с последующих АУГ – кодонов, однако некоторые субъединицы начнут инициацию с первого АУГ – кодона. В этом случае одна иРНК может направить синтез двух белков разной длины. Такие иРНК имеются у многих вирусов.

2) сдвиг рамки трансляции;

Трансляция может происходить без сдвига рамки и со сдвигом ее. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изменился, при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представляющие собой укороченный участок первого полипептида (трансляция без сдвига рамки).



В том случае, если произошел сдвиг на один или два нуклеотида, меняется смысл всех кодонов (триплетов), стоящих за местом сдвига. В этом случае одна молекула иРНК может транслироваться с образованием двух уникальных белков, т.е. таких, у которых нет идентичных аминокислотных последовательностей.

Таким образом, общее число триплетов в составе молекулы нуклеиновой кислоты может быть меньше суммы числа триплетов, входящих в состав всех генов. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.

4) сплайсинг;

5) сплайсинг со сдвигом рамки широко распространен у ряда вирусов. В результате сплайсинга и сдвига рамки иРНК генов транслируются с образованием двух белков

Одним из способов экономии генетического материала является нарезание полипептида - предшественника на участки разной длины, в результате чего образуются разные полипептиды с перекрывающимся аминокислотными последовательностями.

4)транскрипция с перекрывающихся областей ДНК и и др.

В результате перекрывания генов и сдвига рамки трансляции «размыкаются» границы генов, и понятие «ген» в известном смысле утрачивает первоначальное значение как дискретный фрагмент генома и приобретает скорее функциональное значение.

Наследственность у вирусов

Наследственность - это свойство организмов обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать спе­цифический характер индивидуального развития. Изменчивость - свойство, про­тивоположное наследственности. Изменчивость вирусов может быть обусловлена мутацией генов.

Мутации у вирусов

В основе наследственного изме­нения свойств вирусов могут лежать два процесса:

1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства, и

2) рекомбинация, т. е. обмен генетическим материалом меж­ду двумя близкими, но отличающимися по наследственным свойствам вирусами.

Мутация - изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводит к стойким изменениям наследственных свойств вирусов.

Все мутации вирусов делятся на две группы:

Спонтанные и

Индуцированные;

По протяженности их делят на:

Точечные и

Аберрационные (изменения, затрагивающие значительный участок генома).

Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих виру­сов) или одной пары комплементарных нуклеотидов (для ДНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.

Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклео­тидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокации) целых участков и даже повороты участ­ков на 180° (так называемые инверсии). Это будут уже более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.

Следует отметить, что не всегда точечные мутации реализуются. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них - вырожденность генетического кода. Как уже указывалось, код белкового синтеза вырожден, т, е. некоторые аминокислоты могут кодироваться несколь­кими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.

Другое дело, когда какая-то аминокислота кодируется всего одни триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеет. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.

Как спонтанные, так и индуцированные мутации делят также на прямые и обратные (реверсии). Прямые мутации меняют фенотип, а обратные его восстанавливают.

Спонтанные мутации

Спонтанные мутации у виру­сов возникают в популяции без искусственного вмешательства со стороны экспериментатора. Не может быть абсолютно однородных популяций. Однородность относительна, поэтому в вирусной популя­ции в процессе ее развития спонтанные мутанты возникают с опреде­ленной вероятностью.

Частота мутаций одного и того же признака может быть различной в зависимости от штамма. Так, частота мутаций по признаку rсt 40° у штамма W-Fox вируса полиомиелита составляла 2,4´10 -5 , тогда как у штамма.Ch-AT она была на порядок ниже - 2,0´10 -6 .

Каковы причины и механизмы возникновения спонтанных мутаций? По мнению Уотсона и Крика, спонтанные мутации могут возни­кать вследствие таутомерного (таутомерия – один из видов изомерии, при которой изомеры легко переходят друг в друга) превращения оснований, входящих в состав ДНК. Так, например, таутомерный сдвиг в положении атома водорода у аденина приводит к тому, что аденин при репликации спари­вается не с тимином, а с гуанином. Такая ошибка при спаривании осно­ваний приводит при последующих репликациях к замене пары AT и ГЦ.

Спонтанные мутации, возникшие в одном и том же гене, распре­деляются по его длине неравномерно. Одни участки гена мутируют часто, их называют «горячими» точками, другие же - редко. Кроме того, спонтанные мутации при репликации могут быть обусловлены ошибками в работе ферментов -ДНК- или РНК-полимераз.

Изучение мутационной изменчивости того или иного вируса состоит в определении физико-химических и биологических свойств мутанта. (вирулентностью, реактогенностью, иммуногенностью, способность репродукции в той или иной системе, термо-резистентность, гемагглютинирующие, гемолизирующие и другие свойства).

Мутации у вирусов могут возникать и в результате адаптации их к необычным биологическим системам in vitro (культуры клеток) и in vivo (животные, куриные эмбрионы).

Мутации при пассажах на животных. Стабильные высокоиммуногенные штаммы вирусов получают методом длительной адаптации к лабораторным, естественно-восприимчивым или невосприимчивым животным. Так, был по­лучен вакцинный штамм (virus fixe) бешенства.

При адаптации вирусов к естественно-невосприимчивым видам животных или к гетерогенным тканям экспериментально-восприимчивых животных решающее зна­чение имеют вид и возраст животного, способ введения вируса и его свойства, а также свойства штамма.

Для успеха адаптации вирусов к организму лабораторных животных сущест­венное значение имеет ослабление резистентное их путем воздействия кортизоном, температурой, облучением g-лучами и т. п.

Мутации при пассажах в культурах клеток. В культурах клеток и тканей успешно выращиваются и аттенуируются многие вирусы.

Причины возникновения мутаций в процессе адаптации. Изменение свойств вируса в процессе пассажей происходит ступенчато. В первых пассажах обнаруживают главным образом вирионы, изменившие ка­кой-либо один генетический признак; с увеличением пассажей в попу­ляции выявляют вирионы, изменившие два и более генетических признака; по мере пассирования количество таких частиц постоянно возрастает, и в дальнейшем у подавляющего большинства вирусных частиц наблюдают изменение многих генетических признаков.

В основе механизма наследственной изменчивости вирусной популяции при пассажах лежат два процесса: мутация и селекция, причем и в том, и в другом процессе важную роль играет внешняя среда, являющаяся одновременно индуктором мутации и се­лективным фактором.

Если гетерогенную вирусную популяцию, имеющую в своем составе измененные и исходные вирусные частицы, культивировать в обычных условиях, то это приводит к ее реверсии.

Наконец, накопилось большое число фактов об изменчивости вируса, вызываемой хозяином (host-controlled variation). Эти измене­ния заключаются в том, что клетка влияет на характер синтезирующих в ней компонентов вируса. Такие модификации не затрагивают нуклеотидную последовательность вирусного генома.

Таким образом, клетка хозяина может существенно влиять на фенотип вируса или блокировать (частично или полностью) его репро­дукцию.

Индуцированные мутации

Возникают при действии на вирус (на его вегетатив­ную или покоящуюся форму) различными химическими и физическими мутагенами, а также в процессе адаптации его к необычным биологическим системам (при адап­тационной изменчивости).

Применение искусственных мутагенов имеет два преимущества. Во-первых, они вызывают мутации в десятки и сотни раз эффективнее, чем природные факторы, и, во-вторых, действие некоторых искусственных мутагенов имеет известную напра­вленность, что позволяет заранее предвидеть, на какие элементы структуры нуклеи­новых кислот и каким образом действует тот или иной мутаген и какие изменения в них вызовет.

Химические мутагены. Предложено разделить мутагены на две основные группы:

1) мутагены, реагирующие с нуклеиновой кислотой только во время ее репликации (аналоги пуриновых и пиримидиновых оснований);

2) мутагены вступающие в реакцию с покоящейся молекулой нуклеиновой кислоты, но требующие для формирования мутаций последующих ее репликаций (азотистая кислота, гидроксиламин, алкилирующие соединения).

В последние годы синтезирован и изучен целый ряд химических соединений - супермутагенов (нитрозопроизводных мочевины - нитрозогуанидин и его производ­ные)

Молекулярные механизмы мутагенного действия химических соединений. В основе молекулярных изменений вирусной нуклеиновой кислоты, приводящих к мутации, лежат два основных процесса за­мена основания и выпадение или вставка основания. Различает два типа за­мены оснований, входящих в состав вирусной нуклеиновой кислоты: простую (транзиция) и сложную (трансверсия). При простой замене на место одного пуринового основания встает другое (например, вместо аденина - гуанин) или вместо одного пиримидинового основания - другое пиримидиновое основание (вместо цитозина - урацил).

При сложной замене - трансверсии вместо пуринового основания появляется пиримидиновое или пиримидиновое основание заменяется пуриновым.

Другой процесс - выпадение (делеция) или вставка оснований- ведет к более глубоким изменениям генетического кода, чем простая - замена оснований. Мутационные повреждения в одном участке генома нередко приводят к изме­нению нескольких генетических признаков, имеющих различное фенотипическое проявление (плейотропия).

Мутагенное действие аналогов азотистых оснований (5-бромурацила, 5-фторурацила, 5-йодурацила, 2-аминопурина, 2,6-диаминопурина). Аналоги основании индуцируют мутации только при воздействии на реплицирующиеся молекулы ДНК и РНК. Из этой группы соединений наиболее хорошо изучены 5-бромурацил и 2-аминопурин. Tимин (Т) является урацилом (У), в котором атом водорода (Н) в одной из СН - групп заменен метильной группой (СН 3). Другими словами, тимин - это метилурацил. Однако в урациле этот атом водорода можно заменить и другим атомом, например брома (Вr). В результате такой замены получается новое соединение - бромурацил (БУ), который является аналогом тимина, так как структура основного ядра (кольца) у обоих соединений совершенно одинакова, а различие заключается лишь в одной группе (Вr вместо СН 3).

Мутации, индицируемые алкирующими соединениями. К веществам, под дей­ствием которых основания удаляются из нуклеиновой кислоты, относятся алкирующие соединения - иприт и его аналоги, этиленимин и его аналоги - этилметансульфонат и этилэтансульфонат и др. Они непосредственно взаимодействуют с нуклеи­новыми кислотами, пуринами и главным образом с гуанином, вызывая простые (транзиции) и сложные (трансверсии) замены; из ДНК удаляются пурины (в основ­ном гуанин) и, в зависимости от того, какой нуклеотид встретится напротив бреши при репликации, либо возникает мутация типа замены, либо не возникает ее совсем.

Кроме простых замен (пурин на пурин), алкилирующие агенты способны инду­цировать сложные замены - пурин на пиримидин.

Мутагенное действие гидроксиламина. Гидроксиламин индуцирует мутации по типу образования простых замен оснований в нуклеиновой кислоте, направление которых зависит от типа нуклеиновой кислоты, которую содержит вирус. У ДНК-содержащих вирусов этот мутаген реагирует исключительно с цитозином. При воз­действии на РНК-содержащие вирусы он вступает в реакцию как с цитозином, так и с урацилом, что обусловливает замены цитозина на урацил и наоборот.

Мутагенное действие азотистой кислоты. Среди веществ, химически изменяю­щих основания в покоящейся молекуле нуклеиновой кислоты, наиболее хорошо изучены азотистая кислота и гидроксиламин. Механизм действия азотистой кислоты (HNO 2) как мутагена на нуклеиновые кислоты вирусов заключается в дезаминировании органических оснований, т. е. отщеплении от их молекул аминогруппы (NH 2). В результате действия азотистой кислоты аденин (А) превращается в гипоксантин (Гк), гуанин (Г) - в ксантин (К), а цитозин (Ц) - в урацил (У). Вследствие этой реакции у дезаминированных органических основа­нии возникают новые свойства.

Мутагенное действие повышенной температуры. Влияние повышенной температуры (40-50 °С) обнаружил Фриз в опытах с фагом Т4 и Ю. 3. Гендон при обработке РНК вируса полиомиелита. Температура способ­ствует удалению пуринов (преимущественно гуанина) из ДНК. При репликации такой ДНК напротив бреши, вызванной утратой пурина могут быть включены в реплицирующую нить любые нуклеотиды. Если включится новый тип основания, которого ранее в этом участке не было, может произойти мутация (транзиция или трансверсия).

Мутагенное действие ультрафиолетовых лучей. Действие ультрафиолетовых лучей (УФ) как мутагенов состоит в том, что они взаи­модействуют с молекулами нуклеиновых кислот и поглощаются ими, особенно лучи с длиной волны 260-280 им. Попадая в молекулу нуклеиновой кислоты, они погло­щаются входящими в ее состав органическими основаниями. Оказалось, что тимин (Т), урацил (У) и цитозин-(Ц) более чувствительны к ультрафиолетовым лучам, чем аденин (А) и гуанин (Г). В результате облучения структура указанных пиримидинов изменяется. При облучении УФ-лучами две соседние, молекулы тиминов соединяются друг с другом в пары, образуя так называемые димеры.

Репарации

Установлено, что в клетках организмов имеются своего рода корректоры, ими являются так называемые репарирующие ферменты, задача кото­рых состоит в выправлении ошибок в генетической информации, исправлении от­дельных повреждении в структуре нуклеиновых кислот. Репарирующие ферменты для исправления ошибок и повреждений в структуре нуклеиновых кислот исполь­зуют очень тонкие приемы «восстановительной микрохирургии». Они распознают каким-то образом в молекулах нуклеиновых кислот аномальные кодоны и повре­ждённые участки и стараются их по возможности быстро исправить. Любую ошибку в генетической информации репарирующие ферменты стремятся исправить до начала репликации нуклеиновых кислот, так как в противном случае эта ошибка при мат­ричном механизме копирования перейдет к дочерним молекулам нуклеиновых ки­слот, передастся потомству и станет наследственной.

Один из ферментов, участвующих и восстановлении первичной структуры ДНК (эндонуклеаза), «отрезает» поврежденный нуклеотид от соседнего нуклеотида слева, а другой фермент - справа. Вырезанный аномальный нуклеотид (или участок мо­лекулы) отбрасывается в окружающую среду. Затем приступает к работе другой фермент (экзонуклеаза), который расширяет брешь, образовавшуюся в нити ДНК. Далее фермент ДНК-полимераза восстанавливает недостающие участки поврежде­ний нити согласно закону комплементарности, т. е. в соответствии со второй нитью. На последнем этапе вновь синтезированные участки «сшиваются» в прочную единую цепь с помощью фермента лигазы, благодаря чему восстанавливается исходная мо­лекула ДНК, не имеющая структурных изъянов.

Вирус гриппа — чемпион мутации
Ежегодно тяжелую форму гриппа переносят от трех до пяти миллионов человек, до 500 тысяч из которых умирают от самого гриппа или его осложнений (по данным ВОЗ ). Прививки от гриппа, конечно, существенно снижают вероятность заболеть. Однако

в отличие от таких болезней, как корь или туберкулез, иммунитет к которым вырабатывается после первого заболевания или прививки и остаётся эффективным в течение всей жизни, гриппом многие болеют практически каждый год.

Эффективность иммунитета определяется тем, насколько успешно иммунная система распознает и обезвреживает источник инфекции — вирус или бактерию. При первом заражении или прививке иммунная система учится вырабатывать антитела — молекулы, которые связываются с вирусными частицами или бактериями и обезвреживают их. Однажды выработав антитела, иммунная система оставляет их «на вооружении» до конца жизни.

Поэтому, если человек заражается той же самой инфекцией повторно, иммунитет срабатывает и инфекция быстро обезвреживается. Именно по такому принципу работают прививки против кори, туберкулёза и других заболеваний. Почему же этот механизм дает сбой с вирусом гриппа и прививаться от гриппа приходится каждый год заново?

Это связано с двумя причинами. Первая — это особенность взаимодействия между нашей иммунной системой и вирусом. Поверхность частиц вируса гриппа покрыта молекулами двух белков, называемых гемагглютинин (HA) и нейраминидаза (NA) (см. рисунок). По типу этих белков классифицируются различные варианты гриппа человека, например, H1N1 (гемагглютинин типа 1, нейраминидаза типа 1). Человеческая иммунная система умеет вырабатывать антитела, которые успешно связываются с этими белками. Проблема заключается в том, что эти антитела довольно «привередливы». Даже небольшие изменения в структуре HA и NA приводят к тому, что антитела теряют способность связываться с ними и обезвреживать вирус.

С точки зрения иммунной системы такие модифицированные варианты уже известного вируса выглядят как совершенно новые инфекции.

Во-вторых, на помощь вирусу приходит чрезвычайно полезное для него (и вредное для нас) свойство — способность быстро эволюционировать. Как и все другие организмы, вирус гриппа подвержен случайным мутациям. Это значит, что генетическая информация вирусов-потомков немного отличается от генетической информации вирусов-родителей. Таким образом, мутации постоянно создаются новые варианты белков HA и NA. Однако в отличие от высших живых организмов и от многих других вирусов грипп видоизменяется очень быстро:

чтобы накопить столько же мутаций, сколько белки млекопитающих накапливают за миллионы лет, вирусу гриппа требуется всего несколько лет или даже месяцев.

Таким образом, эволюцию вируса гриппа мы можем наблюдать буквально в реальном времени.

Некоторые из мутаций гриппа приводят к тому, что иммунная система, «натренированная» на старый штамм, распознаёт мутировавший вирус хуже, чем не мутировавший. В то время как иммунитет эффективно борется с немутировашими вирусами, вирусы-мутанты размножаются и заражают всё большее и большее количество людей. Это классический процесс естественного отбора, открытого Чарльзом Дарвином.

Отбор осуществляет иммунная система, которая, защищая нас, невольно оказывает нам медвежью услугу.

Через некоторое время — как правило, два-три года — старый, не мутировавший штамм (вариант вируса) полностью вымирает, а вирус-мутант становится новым доминирующим штаммом. Иммунная система большинства людей учится справляться и с новым штаммом, и цикл повторяется. Такая «гонка вооружений» между вирусом и иммунной системой продолжается десятилетиями.

Как бороться с гриппом

Как в таком случае бороться с гриппом? Есть несколько способов помочь нашей иммунной системе. Во-первых, создаются противовирусные препараты, например, озельтамивир (известный под торговой маркой «Тамифлю») или амантадин, которые препятствуют воспроизводству вируса внутри клеток. К сожалению, вирусы со временем вырабатывают устойчивость к таким препаратам посредством того же процесса мутаций и естественного отбора:

так, почти весь вирус подтипа H1N1, циркулировавший в 2009 году, оказался устойчив к озельтамивиру («Тамифлю»).

Во-вторых, ученые пытаются научить иммунную систему распознавать менее изменчивые части вируса (об этом писала ).

В-третьих, ученые пытаются предсказать, какой штамм вируса окажется наиболее распространенным в следующем году. Если мы научимся это делать, мы сможем «переобучать» нашу иммунную систему по мере необходимости, заранее делая прививку против того штамма, который будет преобладать в следующем сезоне, и наш иммунитет получит фору в гонке вооружений с вирусом. Собственно,

уже сегодня Всемирная организация здравоохранения обновляет состав вакцины от гриппа каждые полгода.

Однако иногда — раз в несколько лет — преобладающим оказывается не тот штамм, на основе которого разрабатывалась вакцина; в таком случае прививка оказывается менее эффективной. Поэтому точное предсказание штамма, который будет наиболее распространён в следующем году, является одной из важных задач борьбы с гриппом.

Наша группа (Джонатан Душофф, Джошуа Плоткин, Георгий Базыкин и Сергей Кряжимский) занимается изучением эволюции вируса гриппа и других организмов уже несколько лет. Наше сотрудничество началось в Принстонском университете в лаборатории профессора Саймона Левина, чьими аспирантами мы были в разные годы. Нас с самого начала интересовали как практические вопросы (как наиболее эффективно предсказать следующий преобладающий штамм), так и фундаментальные вопросы эволюции, например,

является ли эволюция гриппа направленной или случайной.

Задачей нашего последнего совместного проекта было определить взаимосвязь между мутациями, происходящими в разных частях белков HA и NA. Дело в том, что одна и та же мутация, скажем, в белке HA может иметь очень разные последствия для вируса в зависимости от того, произошли ли мутации в других частях того же белка. Например, мутация А позволяет вирусу стать «невидимым» для иммунной системы только в паре с мутацией Б, в то время как каждая из мутаций сама по себе для вируса бесполезна. Обнаружить такие пары мутаций, называемых эпистатическими, можно, проанализировав статистические закономерности в генетических последовательностях вируса. Это мы и сделали .

Такой анализ стал возможен лишь в последние годы, когда резко упала стоимость «секвенирования», то есть выяснения генетических последовательностей.

Количество генетических последовательностей вируса гриппа, зарегистрированных в базе данных , за последние пять лет выросло более чем в шесть раз и достигает 150 тысяч. Такого количества данных достаточно, чтобы обнаружить эпистатические пары мутаций, которые произошли в вирусе гриппа за последние 100 лет.

Оказывается, количество эпистатических мутаций в гриппе достаточно велико, то есть избежать атаки иммунной системы или обрести невосприимчивость к антивирусному препарату могут, по всей видимости, лишь весьма специфические варианты вируса, которые обзаводятся необходимыми комбинациями мутаций. Например, невосприимчивость к препарату озельтамивир появилась в 2009-м году только у вирусов, обладающих как минимум тремя специфическими мутациями в белке NA.

С практической точки зрения тот факт, что мутации в вирусе гриппа эпистатические, позволяет надеяться, что в ближайшем будущем мы научимся предсказывать последующие мутации по предыдущим. Пока вирус «собирает» все необходимые мутации для успешной комбинации, мы сможем разработать новую вакцину против штамма, обладающего всей комбинацией, который распространится только через несколько месяцев или даже лет.

Чтобы определить успех той или иной мутации в сочетании с другими, необходимо понять, как именно происходит взаимодействие между мутациями

и как они, совместно и по отдельности, влияют на структуру белков HA и NA, а также разобраться, как иммунная система реагирует на модифицированные варианты этих белков. Эти вопросы сейчас активно исследуются, в особенности в группе Джошуа Плоткина в Университете Пенсильвании, с которой мы активно сотрудничаем, а также другими коллективами.

Инструкция

Среди ученых интерес к гриппу вызван, прежде всего, тем, что, не смотря на всю прогрессивность современной медицины, абсолютно эффективного лекарства против этого заболевания не найдено. Как и много лет назад, люди в период болезни используют различные «бабушкины» средства, такие как употребление большого количества жидкости, мед, различные травяные настои и т.д. Да, сегодня существует множество препаратов, способных улучшить иммунитет и общее самочувствие человека, заразившегося гриппом, однако, они не являются абсолютной панацеей. Даже при помощи прививок не всегда удается избежать заражения. Как ни странно, грипп по-прежнему остается «неизведанной территорией» для ученых-медиков.

Возможно, максимально эффективное лекарство до сих пор не найдено из-за постоянной мутации вируса гриппа. Но же это происходит? С точностью ответить на этот вопрос невозможно, но вирус, как и любой другой живой организм в природе, пытается выжить, приспособиться к новым условиям существования. Скорее всего именно это стремление и заставляет вирус гриппа изменяться, приобретать иные, более устойчивые к различным воздействиям формы.

Сегодня ученые выделяют два пути, по которым может идти вирус гриппа в своих мутационных процессах, их называют «антигенный дрейф» и «антигенный сдвиг». Любой организм, который пытается захватить вирус гриппа, начинает оказывать ему всевозможное сопротивление. При этом вырабатываются особые антитела, их задача – ликвидация вируса гриппа и освобождение организма. Однако, вирус гриппа начинает сопротивляться такому нападению, он способен изменять свою структуру для того, чтобы противостоять антителам. В результате такой борьбы и образуются новые, ранее неизвестные формы гриппа. Именно поэтому эти мутационные процессы «антигенные». После мутации антитела, выработанные организмом, для новой формы вируса уже не представляют никакой угрозы. Благодаря этому грипп без труда преодолевает преграды иммунной системы и начинает свою разрушительную деятельность в организме.

Первая разновидность мутации гриппа – «дрейф» происходит отнюдь не сразу, вирус изменяется постепенно, поэтому не представляет особой опасности для организма, обычно иммунная система все-таки справляется с болезнью. Однако, второй вид мутации – «сдвиг» весьма серьезен. Вирус в кротчайшие сроки способен значительно изменить свою структуру, образуя новые генетические комбинации. Именно из-за второго вида мутации появились такие пугающие разновидности гриппа, как «птичий» и «свиной». При подобном резком сдвиге структуры вируса у иммунной системы практически нет шансов в борьбе , так как антитела просто не успевают вырабатываться. В этом случае вирус способен распространяться очень быстро, начинается эпидемия, способная забрать немало человеческих жизней.

Введение

Повышение сохранности и продуктивности сельскохозяйственных животных невозможно без дальнейшего совершенствования ветеринарного обслуживания животноводства. Среди ветеринарных дисциплин важное место принадлежит вирусологии. Современный ветеринарный врач должен знать не только клинико - патологическую сторону болезни, но и иметь четкое представление о вирусах, их свойствах, методах лабораторной диагностики и особенностях постинфекционного и поствакцинального иммунитета.

Вирусы изменяют свой свойства как в естественных условиях размножения, так и в эксперименте. В основе наследственного изменение свойств вирусов могут лежать два процесса: 1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства; 2) рекомбинация, т. е. обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусами.

Мутация у вирусов

Мутация - изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводить к стойким изменением наследственных свойств вирусов. Все мутации вирусов делятся на две группы:

· спонтанные;

· индуцированные;

По протяженности их делят на точечные и аберрационные (изменения, затрагивающие значительный участок генома). Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.

Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклеотидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокация) целых участков и даже повороты участков на 180° (так называемые инверсии), смещения рамки считывания - более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.

Но не всегда точечные мутации приводят к изменению фенотипа. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них - вырожденность генетического кода. Код белкового синтеза вырожден, т. е. некоторые аминокислоты могут кодироваться несколькими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему, если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.

Природа пользуется своеобразным языком синонимов и, заменяя один кодон другим, вкладывает в них одно и тоже понятие (аминокислоту), сохраняя, таким образом, в синтезируемом белке его естественную структуру и функцию.

Другое дело, когда какая-то аминокислота кодируется всего одним триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеется. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.

Аберрация у фагов обусловлена делециями (выпадением) различного числа нуклеотидов, от одной пары до последовательности, которая обуславливает одну или несколько функций вируса. Как спонтанные, так и индуцированные мутации делят также на прямые и обратные.

Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических проявлений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покрытием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. п.

В других случаев мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.

В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции в определенных для него условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные - ts-мутации, при которых вирус теряет способность размножаться при повышенных температурах (39 - 42°С), сохраняя эту способность при обычных температурах выращивания (36 - 37°С).

Морфологические или структурные мутации могут касаться размера вириона, первичной структуры вирусных белков, изменения генов, детерминирующих ранние и поздние вирусспецифические ферменты, обеспечивающие репродукцию вируса.

По своему механизму мутации могут быть тоже разными. В одних случаях происходит делеция, т. е. выпадение одного или нескольких нуклеотидов, в других - происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях - замена одного нуклеотида другим.

Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные (реверсии) - его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит вместе первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия мутации) или в другом гене (экстрагенная супрессия мутации). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэтому при получении мутантов с заданными свойствами, например вакцинных штаммов, приходится считаться с возможной их реверсией к дикому типу.

Вирусы отличаются от остальных представителей живого мира не только своими малыми размерами, избирательной способностью размножаться в живых клетках, особенностями строения наследственного вещества, но и значительной изменчивостью. Изменения могут касаться величины, формы, патогенности, антигенной структуры, тканевого тропизма, устойчивости к физико - химическим воздействиям и других свойств вирусов. Значение причин, механизмов и характера изменения имеет большое значение при получении необходимых вакцинных штаммов вирусов, а также для разработки эффективных мер борьбы с вирусными эпизоотиями, в процессе которых, как известно, свойства вирусов могут существенно изменят одной из причин сравнительно высокой способности вирусов изменять свои свойства является то, что наследственное вещество этих микроорганизмов менее защищено от воздействия внешней среды.

Мутация вирусов может возникать в результате химических изменений цистронов или нарушения последовательности их расположения в структуре молекулы вирусной нуклеиновой кислоты.

В зависимости от условий различают естественную изменчивость вирусов, наблюдаемую в обычных условиях размножения, и искусственную, получаемую в процессе многочисленных специальных пассажей или путем воздействия на вирусы особых физических или химических факторов (мутагенов).

В естественных условиях изменчивость проявляется не у всех вирусов одинаково. Наиболее ярко этот признак выражен у вируса гриппа. Значительной изменчивости подвержен вирус ящера. Об этом свидетельствует наличие большого количества вариантов у разных типов этих вирусов, и существенные изменения его антигенных свойств в конце почти каждой эпизоотии.

Причины страданий Секлитова Лариса Александровна

Почему мутируют вирусы?

Почему мутируют вирусы?

Но зададимся еще одним интересным вопросом. Почему некоторые заболевания со временем претерпевают всевозможные изменения? Например, раньше были просто: насморк, простуда, грипп, желтуха, а сейчас появились разновидности: птичий, свиной грипп, различные аллергии. Появился СПИД, разновидности гепатита А, Б, С и некоторые новые заболевания, ранее неизвестные медицине.

В связи с тем, что человек развивается, переходит с одного Уровня на другой, а это все – разные диапазоны энергий, то его организм в момент перехода с Уровня на Уровень начинает работать с новыми частотами энергий. Поэтому он может недодавать Космосу уже другие типы энергий . Отсюда и Медицинской Системе приходится вносить в работу микроорганизмов свои поправки. Они производят переконструкцию функции микроорганизмов, ориентируя их на стимулирование производства других типов энергий . Поэтому появляются всякие разновидности гепатитов и гриппа.

В то же время появление новых болезней заставляет земную медицину искать новые методы борьбы с ними, новые лекарства, а это способствует общему развитию человечества. Так что любой минус преобразуется в плюс.

Обратимся еще к одной проблеме, связанной с микроорганизмами, – к теме рака.

Из книги Сжатый Хаос: введение в Магию Хаоса автора Хайн Фил

Сервиторы-вирусы Оказывается, в инструкцию для сервиторов можно ввести приказ о самовоспроизведении, или размножении. Согласно инструкции, самовоспроизведение может происходить в форме клеточного деления при соответствии кибернетическим или вирусным параметрам. Или

Из книги Жизнь души в теле автора Шереметева Галина Борисовна

Почему так сложно? Мне часто задают один и тот же вопрос: «Зачем нужны страдания и такие сложности?»Многие люди еще не могут вполне оценить то хорошее, что имеют. Только после того, как они что-то потеряют, им открывается истинная ценность того, что у них было. После каждой

Из книги Химия автора Данина Татьяна

25. Почему вода охлаждает тела? Почему ложка в супе или чае охлаждает их? Вода на поверхности любого плотного тела (и на коже человека) охлаждает его. И не только вода. Многие другие жидкости также охлаждают тела, с которыми соприкасаются. Например, спирты, эфиры, растворы

Из книги Живые мысли автора

Почему? Уважаемый читатель, прочтите эту короткую главу и подумайте, есть ли у Вас ответы на эти вопросы. Если есть, значит, Вы истинно счастливый человек. Но даже в этом случае, я думаю, Вам необходимо прочитать эту книгу. Это поможет ещё более увеличить Ваше счастье.В Мире,

Из книги 1000 и один способ быть самим собой автора Некрасов Анатолий Александрович

ПОЧЕМУ? Уважаемый читатель, прочтите эту короткую главу и подумайте, есть ли у Вас ответы на эти вопросы. Если есть, значит, Вы истинно счастливый человек. Но даже в этом случае, я думаю, Вам необходимо прочитать эту книгу. Это поможет ещё более увеличить Ваше счастье.В Мире,

Из книги Почему вы глупы, больны и бедны… И как стать умным, здоровым и богатым! автора Гейдж Рэнди

Из книги Последние времена автора Кэрролл Ли

Почему я здесь? Прежде чем рассказать вам, почему же все-таки я здесь, я должен побольше рассказать о том, как все вещи работают для вас. Тогда вы лучше поймете, что представляет собой мое служение и почему я здесь.Многие из вас читают это послание с надеждой почерпнуть из

Из книги Почему вы глупы, больны и бедны… автора Гейдж Рэнди

Из книги Сверхвозможности человека автора Мавлютов Рамиль

3. Спрашивайте: «почему?» Наш мозг предназначен быть любопытным. По мере того, как мы взрослели и «зрели», многие из нас подавили свое природное любопытство или отреклись от него. Позвольте себе быть любопытным! Удивляйтесь сами себе, как то или иное явление могло

Из книги Загадка Большого сфинкса автора Барбарен Жорж

Почему Согласие? Размещение обелиска в свое время подвергалось критике - конечно, по эстетическим причинам. Некоторые предпочитали бы видеть его во дворе Лувра, где он выделялся бы своими размерами и резкими линиями, нарушая однообразие стиля в большей мере, чем на,

Из книги Почему одни желания сбываются, а другие – нет, и как правильно захотеть, чтобы мечты сбывались автора Лайтман Рейчел Соня

Почему же «нет»? Вселенная надежно защищена от тех, кто хочет подчинить Ее себе. Одного количества человеко-мыслей недостаточно. Требуется качество намерения. Оно должно быть хорошим.Оно не должно быть плохим.Но «что такое хорошо и что такое - плохо»?Есть «Закон подобия

Из книги Сила безмолвия автора Минделл Арнольд

Почему я, почему сейчас? В то время как в мире сновидения мы способны понимать, что «наши» переживания нелокальны, та часть нас, что принадлежит к общепринятой реальности, все равно может задаваться вопросами: «Почему я?», «Почему сейчас?» «Чем я заслужил эту битву?»

Из книги Аюрведа и йога для женщин автора Варма Джульет

Почему мы болеем Важнейшим методом аюрведы является самопознание. По аюрведическому учению, причины всех наших заболеваний скрываются в ошибочном мышлении и неправильных поступках, в отсутствии взаимопонимания с миром. Любая проблема, проявившаяся на уровне

Из книги Тень и реальность автора Свами Сухотра

Почему? Постижение идеи можно сравнить с зачатием ребенка. Люди испытывают идущую из глубины сердца потребность в поисках истины. Подобно тому, как потребность в продолжении рода вынуждает нас иметь детей, потребность в истине побуждает нас создавать идеи. Но если истина

Из книги В тени меча. Возникновение ислама и борьба за Арабскую империю автора Холланд Том

Почему? В начале 634 г. тревожная весть достигла Кесарии, красивого города на побережье Палестины, который долгое время служил столицей прилегающей территории. Большой военный отряд сарацин, вторгшись на римскую территорию, перешел в пустыню Негев и направлялся на север к

Из книги Маленькие Будды…а так же их родители! Буддийские секреты воспитания детей автора Клэридж Сиэл

Почему родителям нужен буддизм и почему буддистам стоит стать родителями Движимый любовью и сочувствием К тем, кто еще не узнал эту подлинную природу, Я посвящаю свои действия благу других: Пусть все существа достигнут освобождения! Я проявился в человеческом

Похожие публикации