Компьютерная грамотность, помощь и ремонт

Измерение основных параметров радиоэлементов и проверка их работоспособности. Рабочие токи транзистора Схема измерения обратного тока коллектора

Для изготовления аппаратуры высокого качеств, измерительных и высокоточных схем, часто требуется подобрать радиоэлементы с одинаковыми или возможно более близкими параметрами. Ниже приведены простые схемы измерения основных параметров часто используемых элементов радиосхем, с помощью которых можно измерить:
- вольт-амперные характеристики диодов, в том числе фото-, свето-, туннельных- и обращенных диодов (в интервале напряжений 0… 4,5 В и токов 1мкА … 0,5 А);
- обратный и прямой токи коллектора и ток базы биполярных транзисторов;
- ток стока, начальный ток стока, напряжение «затвор-исток» и напряжение отсечки полевых транзисторов;
- ток через тиристор в открытом и закрытом состоянии, ток через управляющий переход и напряжение на нем, открывающее тиристор при напряжении на аноде 4,5В;
- межбазовый ток и напряжение на эмиттере однопереходных транзисторов.

В качестве измерительных приборов используются стрелочные или цифровые измерительные приборы (микроамперметр и вольтметр), можно использовать обычный тестер. Элемент питания – батарея напряжением 4,5 В или стабилизированный блок питания с таким напряжением.

На рис.1 показан способ измерения обратного тока коллекторного перехода (Iкбо) транзистора структуры n-p-n. Для транзисторов обратной структуры следует изменить полярность питания и включения микроамперметра. Резистор R1 нужен для ограничения тока при пробитом переходе, чтобы защитить измерительный прибор от больших токов. Эта схема позволяет также проверить обратный ток диода, световые характеристики фотодиода, обратный ток p-n –перехода полевого транзистора и измерить ток утечки конденсатора:

Рис 1. Измерение Iкбо

На рис.2 показана схема измерения тока базы, прямого тока через p-n- переход и напряжения на нем у диодов и тиристоров. Резистором R3 задается требуемый ток базы (грубо) и с помощью R4 – точно. Если в вашем распоряжении есть только один измерительный прибор (тестер), то после установления необходимого тока базы вместо микроамперметра включается его эквивалент (резистор R1, показан пунктиром), а тестер включается в качестве второго прибора – вольтметра. Резистор R2, также как в первой схеме, ограничивает ток через прибор при пробитом переходе измеряемого элемента.


Рис 2. Измерение Iб

На рис.3 дана схема измерения коллекторного тока транзистора. Если необходимо при этом измерить напряжение между коллектором и эмиттером транзистора или анодом и катодом тиристора, то вместо микроамперметра включают эквивалентное сопротивление R2, а измерительный прибор включат согласно схеме как вольтметр.


Рис 3. Измерение Iк

На рис.4 показаны способы измерения характеристик полевых транзисторов. В нижнем по схеме положении движка резистора R1 можно измерить начальный ток стока полевого транзистора или межбазовый ток однопереходного транзистора в закрытом состоянии. Межбазовое сопротивление при необходимости можно вычислить, разделив значение напряжения батареи (4,5 В в данном случае) на измеренное значение межбазового тока. В некотором положении движка R1 ток стока полевого транзистора станет равным нулю (мерить нужно на самом нижнем пределе измерения применяемого тестера или вольтметра!). При этом вольтметр «2» покажет напряжение отсечки транзистора.


Рис 4. Полевые и однопереходные транзисторы

Простой способ проверки работоспособности тиристора

С помощью простой схемы можно проверить работоспособность тиристора на переменном и постоянном токе.


Рис 5. Схема проверки тиристоров

S1 – кнопка на замыкание без фиксации. В качестве диода VD1 можно применить любой выпрямительный диод средней мощности (Д226, КД105, КД202, КД205 и др.). Лампа – от фонарика или любая малогабаритная на напряжение 6 – 9 В. Вместо лампы можно, конечно, включить тестер (в режиме измерения тока до 1 А).

Трансформатор маломощный с напряжением на вторичной обмотке от 5 до 9 В.
Проверка переменным током: S2 установить в положение «1». При каждом нажатии S1 лампа должна загораться, при отпускании гаснуть;
Проверка постоянным током: S2 установить в положение «3». При нажатии S1 лампа загорается и горит при отпускании кнопки. Чтобы ее выключить, то есть «закрыть» тиристор, нужно снять напряжение питания, переключив S2 в положение «2».

Если тиристор неисправен, то лампа будет гореть постоянно либо не будет загораться вообще.

Прибор для проверки параметров биполярных транзисторов может быть и самодельным.

Прежде чем вмонтировать транзистор в то или иное радиотехническое устройство, желательно, а если транзистор уже где-то использовался ранее, то совершенно обязательно, проверить его обратный ток коллектора Iкбо статический коэффициент передачи тока h21Э и постоянство коллекторного тока. Эти важнейшие параметры маломощных биполярных транзисторов структур р-n-р и n-р-n ты можешь проверять с помощью прибора, схема и устройство которого изображены на рис. 121. Для него потребуются: миллиамперметр РА1 на ток 1 мА, батарея GB напряжением 4,5 В, переключатель S1 вида измерений, переключатель S2 изменения полярности включения миллиамперметра и батареи, кнопочный выключатель S3 для включения источника питания, два резистора и три зажима типа «крокодил» для подключения транзисторов к прибору. Для переключателя вида измерений используй двухпозиционный тумблер ТВ2-1, для изменения полярности включения миллиамперметра и батареи питания - движковый переключатель транзисторного приемника «Сокол» (о конструкции и креплении переключателя этого типа я расскажу в следующей беседе).

Рис. 121. Схема и конструкция прибора для проверки маломощных биполярных транзисторов

Кнопочный выключатель может быть любым, например подобным звонковому или в виде замыкающихся пластинок, Батарея питания - 3336Л или составления из трех элементов 332 или 316.

Шкала миллиамперметра должна иметь десять основных делений, соответствующих десятым долям миллиамперметра. При проверке статического коэффициента передачи тока каждое деление шкалы будет оцениваться десятью единицами значения .

Детали прибора смонтируй на панели из изоляционного материала, например гетинакса. Размеры панели зависят от габаритов деталей.

Прибор действует так. Когда переключатель S1 вида измерений установлен в положение , база проверяемого транзистора V оказывается замкнутой на эмиттер. При включении питания нажатием кнопочного выключателя S3 стрелка миллиамперметра покажет значение обратного тока коллектора . Когда же переключатель находится в положении , на базу транзистора через резистор R1 подается напряжение смещения, создающее в цепи базы ток, усиливаемый транзистором. При этом показание миллиамперметра, включенного в коллекторную цепь, умноженное на 100, соответствует примерному значению статического коэффициента передачи тока h21Э данного транзистора. Так, например, если миллиамперметр покажет ток 0,6 мА, коэффициент h21Э данного транзистора будет 60.

Положение контактов переключателя, показанное на рис. 121, а, соответствует включению прибора для проверки транзисторов структуры р-n-р. В этом случае на коллектор и базу транзистора относительно эмиттера подается отрицательное напряжение, миллиамперметр подключен к батарее отрицательным зажимом. Для проверки транзисторов структуру n-р-n подвижные контакты переключателя S2 надо перевести в другое нижнее (по схеме) положение. При этом на коллектор и базу транзистора относительно эмиттера будет подаваться положительное напряжение, изменится и полярность включения миллиамперметра в коллекторную цепь транзистора.

Проверяя коэффициент транзистора, следи внимательно за стрелкой миллиамперметра. Коллекторный ток с течением времени не должен изменяться - «плыть». Транзистор с плавающим током коллектора не годен для работы.

Учти: во время проверки транзистора его нельзя держать рукой, так как от тепла руки ток коллектора может измениться.

Какова роль резистора R2, включенного последовательно в коллекторную цепь проверяемого транзистора? Он ограничивает ток в этой цепи на случай, если коллекторный переход транзистора окажется пробитым и через него пойдет недопустимый для миллиамперметра ток.

Максимальный обратный ток коллектора Iкбо для маломощных низкочастотных транзисторов может достигать 20-25, но не больше 30 мкА. В нашем приборе это будет соответствовать очень малому отклонению стрелки миллиамперметра - примерно третьей части первого деления шкалы. У хороших маломощных высокочастотных транзисторов ток Iкбо значительно меньше - не более нескольких микроампер, прибор на него почти не реагирует. Транзисторы, у которых Iкбо превышает в несколько раз допустимый, считай непригодными для работы - они могут подвести.

Прибор с миллиамперметром на 1 мА позволяет измерять статический коэффициент передачи тока h21Э до 100, т.е. наиболее распространенных транзисторов. Прибор с миллиамперметром на ток 5-10 мА расширит соответственно в 5 или 10 раз пределы измерений коэффициента h21Э. Но прибор станет почти нечувствительным к малым значениям обратного тока коллектора.

У тебя, вероятно, возник вопрос: нельзя ли в качестве миллиамперметра - прибора для проверки параметров транзисторов - использовать микроамперметр описанного ранее комбинированного измерительного прибора?

Рис. 122. Схема измерения параметров и S полевого транзистора

Ответ однозначный: можно. Для этого миллиамперметр комбинированного прибора надо установить на предел измерения до 1 мА и подключать его к приставке для проверки транзисторов вместо миллиамперметра РА1.

А как измерить основные параметры полевого транзистора? Для этого нет надобности конструировать специальный прибор, тем более, что в твоей практике полевые транзисторы будут использоваться не так часто, как маломощные биполярные.

Для тебя наибольшее практическое значение имеют два параметра полевого транзистора: - ток стока при нулевом напряжении на затворе и S - крутизна характеристики. Измерить эти параметры можно по схеме, приведенной на рис. 122. Для этого потребуются: миллиамперметр РА1 (используй комбинированный прибор, включенный на измерение постоянного тока), батарея GB1 напряжением 9 В («Крона» или составленная из двух батарей 3336Л) и элемент G2 (332 или 316).

Делай это так. Сначала вывод затвора проверяемого транзистора соедини с выводом истока. При этом миллиамперметр покажет значение первого параметра транзистора - начальный ток стока . Запиши его значение. Затем разъедини выводы затвора и истока (на рис. 122 показано крестом) и подключи к ним элемент G2 плюсовым полюсом к затвору (на схеме показано штриховыми линиями). Миллиамперметр зафиксирует меньший ток, чем Iс нач. Если теперь разность двух показаний миллиамперметра разделить на напряжение элемента G2, получившийся результат будет соответствовать численному значению параметра S проверяемого транзистора.

Для измерения таких же параметров полевых транзисторов с р-n переходом и каналом типа полярность включения миллиамперметра, батареи и элемента надо поменять на обратную.

Измерительные пробники и приборы, о которых я рассказал в этой беседе, поначалу тебя вполне устроят. Но позже, когда настанет время конструирования и налаживания радиоаппаратуры повышенной сложности, например супергетеродинных приемников, аппаратуры телеуправления моделями, потребуются еще измерители емкости конденсаторов, индуктивности катушек, вольтметр с повышенным относительным входным сопротивлением, генератор колебаний звуковой частоты. Об этих приборах, которые пополнят твою измерительную лабораторию, я расскажу позже.

Но, разумеется, самодельные приборы не исключают приобретение промышленных. И если такая возможность у тебя появится, то в первую очередь купи авометр - комбинированный прибор, позволяющий измерять постоянные и переменные напряжения и токи, сопротивления резисторов, обмоток катушек и трансформаторов и даже проверять основные параметры транзисторов. Такой прибор при бережном обращении с ним многие годы будет тебе верным помощником в радиотехническом конструировании.

Статье мы с вами разобрали такой важный параметр транзистора, как коэффициент бета (β) . Но есть в транзисторе еще один интересный параметр. Сам по себе он ничтожный, но делов может наделать ого-го! Это все равно что галька, которая попала в кроссовок легкоатлету: вроде бы маленькая, а причиняет неудобство при беге. Так чем же мешает эта самая “галька” транзистору? Давайте разберемся…

Прямое и обратное включение PN-перехода

Как мы помним, транзистор состоит из трех полупроводников. , который у нас база-эмиттер называется эмиттерным переходом , а переход, который база-коллектор – коллекторным переходом.

Так как в данном случае у нас транзистор NPN, значит ток будет течь от коллектора к эмиттеру, при условии, что мы будем открывать базу, подавая на нее напряжение более чем 0,6 Вольт (ну чтобы транзистор открылся).

Давайте гипотетически возьмем тонкий-тонкий ножик и вырежем эмиттер прямо по PN-переходу. У нас получится как-то вот так:

Стоп! У нас что, получился диод ? Да, он самый! Помните, в статье вольтамперная характеристика (ВАХ) мы рассматривали ВАХ диода:


В правой части ВАХ мы с вами видим как веточка графика очень резко взлетела вверх. В этом случае мы подавали на диод постоянное напряжение вот таким образом, то есть это было прямое включение диода.

Диод пропускал через себя электрический ток. Мы с вами даже проводили опыты с прямым и обратным включением диода. Кто не помнит, можно прочитать .

Но если поменять полярность

то диод у нас не будет пропускать ток. Нас всегда так учили, и в этом есть доля правды, но… наш мир не идеален).

Принцип работы PN-перехода? Мы его представляли как воронку. Так вот, для этого рисуночка

наша воронка будет перевернута горлышком к потоку


Направление потока воды – это направление движения электрического тока. Воронка – это и есть диод. Но вот вода, которая попала через узкое горлышко воронки? Как же ее можно назвать? А называется она обратный ток PN перехода (I обр) .

А как вы думаете, если прибавить скорость течения воды, увеличится ли количество воды, которое пройдет через узкое горлышко воронки? Однозначно! Значит, если прибавлять напряжение U обр , то и увеличится обратный ток I обр , что мы с вами и видим в левой части на графике ВАХ диода:

Но до какого предела можно увеличивать скорость потока воды? Если она будет очень большой, наша воронка не выдержит, стенки треснут и она разлетится по кусочкам, так ведь? Поэтому на каждый диод можно найти такой параметр, как U обр.макс , превышение которого для диода равнозначно летальному исходу.


Например, для диода Д226Б:


U обр.макс = 500 Вольт, а максимальное обратное импульсное U обр. имп.макс = 600 Вольт. Но имейте ввиду, что электронные схемы проектируют, как говорится “с 30% запасом”. И если даже в схеме обратное напряжение на диоде будет 490 Вольт, то в схему поставят диод, который выдерживает более 600 Вольт. С критическими значениями лучше не играть). Импульсное обратное напряжение – это резкие всплески напряжения, которые могут достигать амплитудой до 600 вольт. Но здесь тоже лучше взять с небольшим запасом.

Так… а что я это все про диод да про диод… Мы же вроде как транзисторы изучаем. Но как ни крути, диод – кирпичик для построения транзистора. Значит, если приложить к коллекторному переходу обратное напряжение, то у нас через переход потечет обратный ток, как в диоде? Именно так. И называется такой параметр в транзисторе . У нас он обозначается как I КБО , у буржуев – I CBO . Расшифровывается как “ток между коллектором и базой, при открытом эмиттере” . Грубо говоря, ножка эмиттера никуда не цепляется и висит в воздухе.

Чтобы замерять обратный ток коллектора, достаточно собрать вот такие простенькие схемки:

Для NPN транзистора для PNP транзистора

У кремниевых транзисторов обратный ток коллектора меньше, чем 1 мкА, у германиевых: 1-30 мкА. Так как у меня замеряет только от 10 мкА, а германиевых транзисторов под рукой нет, то провести этот опыт я не смогу, так как разрешение прибора не позволяет.

Мы так и не ответили на вопрос, почему обратный ток коллектора имеет такое важное значение и приводится в справочниках? Все дело в том, что при работе транзистор рассеивает какую-то мощность в пространство, значит нагревается. Обратный ток коллектора очень сильно зависит от температуры и на каждые 10 градусов по Цельсию увеличивает свое значение в два раза. Не, ну а что такого? Пусть возрастает, никому же вроде не мешает.

Влияние обратного коллекторного тока

Все дело в том, что в некоторых схемах включения часть этого тока проходит через эмиттерный переход. А как мы с вами помним, через эмиттерный переход течет базовый ток. Чем больше управляющий ток (ток базы) тем больше управляемый (ток коллектора). Это мы с вами рассматривали еще в статье. Следовательно, малейшее изменение базового тока ведет к большому изменению коллекторного тока и вся схема начинает работать неправильно.

Как борются с обратным коллекторным током

Значит, самый главный враг транзистора – это температура. Как же с ней борются разработчики радиоэлектронной аппаратуры (РЭА)?

– используют транзисторы, у которых обратный коллекторный ток имеет очень малое значение. Это, конечно же, кремниевые транзисторы. Небольшая подсказка – маркировка кремниевых транзисторов начинается с букв “КТ”, что означает К ремниевый Т ранзистор.

– использование схем, которые минимизируют обратный ток коллектора.

Обратный ток коллектора – важный параметр транзистора. Он приводится в даташите на каждый транзистор. В схемах, которые используются в экстремальных температурных условиях, обратный ток коллектора будет играть очень большую роль. Поэтому, если собираете схему, где не используется радиатор и вентилятор, то, конечно же, лучше взять транзисторы с минимальным обратным коллекторным током.

Лабораторная работа

Исследование биполярного транзистора и транзисторного каскада в режиме малого сигнала. (4 часа)

    Исследование зависимости тока коллектора от тока базы и напряжения база-эмиттер

    Анализ зависимости коэффициента усиления по постоянному току от тока коллектора

    Получение входных и выходных характеристик транзистора

    Определение коэффициента передачи по переменному току

    Исследование коэффициента усиления по напряжению в усилителях с общим эмиттером и общим коллектором

    Определение фазового сдвига сигналов в усилителях

    Измерение входного и выходного сопротивлений усилителей

Краткие сведения из теории:

Статический коэффициент передачи тока транзистора определяется как отношение тока коллектора I­­ k к току базы I б:

Коэффициент передачи тока
определяется отношением приращения ∆I к коллекторного тока к вызывающему его приращению базового тока ∆I б:

Дифференциальное входное сопротивление r вх транзистора в схеме с общим эмиттером (ОЭ) определяется при фиксированном значении напряжения коллектор-эмиттер. Оно может быть найдено как отношение приращения напряжения база-эмиттер к вызванному им приращению ∆I­ б тока базы:

Дифференциальное входное сопротивление r вх транзистора в схеме С 07 через параметры транзистора определяется следующим выражением:

r б - распределенное сопротивление базовой полупроводника,

r э - дифференциальное сопротивление перехода база-эмиттер, определяемое через выражение:

I э - постоянный ток эмиттера в миллиамперах.

Первое слагаемое r б во много раз меньше второго, поэтому:

Дифференциальное сопротивление r э перехода база-эмиттер для биполярного транзистора сравнимо с дифференциальным входным сопротивлением r вх об транзистора в схеме с общей базой, которое может быть найдено по формуле:

Через параметры транзистора это сопротивление определяется выражением:

Первым слагаемым в выражении можно пренебречь и считать, что:

В транзисторном каскаде коэффициент усиления по напряжению определяется отношением амплитуд выходного напряжения к входному (сигналы синусоидальны):

Усилитель с общим эмиттером - коэффициент усиления по напряжению:

r к - сопротивление в цепи коллектора, которое определяется параллельным соединением сопротивления R к и сопротивлением нагрузки, чью роль может играть, например, следующий усилительный каскад:

r э - дифференциальное сопротивление эмиттерного перехода, равное

Для усилителя с сопротивлением R э в цепи эмиттера коэффициент усиления равен:

Входное сопротивление усилителя переменному току определяется как отношение амплитуд синусоидального входного напряжения и входного тока:

Входное сопротивление транзистора

Входное сопротивление усилителя по переменному току r вх вычисляется как параллельное соединение r i , R 1 , R 2 .

Значение дифференциального выходного сопротивления схемы по напряжению U хх холостого хода на выходе усилителя, которое может быть измерено как падение напряжения на сопротивлении нагрузки, превышающем 200 кОм , и по напряжению U вых, измеренного для данного сопротивления нагрузки R­ н из уравнения, решаемого относительно r вых

Сопротивление
можно считать разрывом в цепи нагрузки.

Приборы и элементы:

Биполярный транзистор 2N3904

Источник постоянной ЭДС

Источник переменной ЭДС

Амперметры

Вольтметры

Осциллограф

Резисторы

Функциональный генератор

Порядок проведения экспериментов:

Эксперимент 1. Определение статического коэффициента передачи тока резистора

а) Собрать схему со схемой, изображённую на рисунке рис. 10_001

Включить схему. Записать результаты измерения тока коллектора, тока базы и напряжения коллектор-эмиттер. По полученным результатам подсчитать статический коэффициент передачи транзистора
:

б) Изменить наминал источника ЭДС E б до 2,65В. Включить схему. Записать те же данные и подсчитать
.

в) Изменить наминал источника ЭДС E к до 5В. Включить схему. Записать те же данные и подсчитать
. Затем установить E к = 10В.

Эксперимент 2. Измерение обратного тока коллектора.

На схеме 10_001 изменить номинал источника ЭДС Е к до 0В. Включить схему. Записать результаты измерения тока коллектора для данных значений тока базы и напряжения коллектор-эмиттер.

Эксперимент 3.

а) В схеме 10_001 провести измерения тока коллектора I к для каждого значения E к и E б и заполнить таблицу. По данным таблицы 1 построить график зависимости I к от E к.

Таблица 1.

б) Собрать схему рис. 10_002.

Включить схему. Зарисовать осциллограмму выходной характеристики, соблюдая масштаб. Повторить измерения для каждого значения E б из таблицы 1. Осциллограммы выходных характеристик для разных токов базы зарисовать на одном графике.

Эксперимент 4. Получение входной характеристики транзистора в схеме с общим эмиттером.

а) Открыть файл 10_002. Установить значение напряжения источника E к =10В и провести измерения тока базы E б, напряжение база-эмиттер U бэ, тока эмиттера I э для различных значений напряжения источника E б в соответствии с таблицей 2.

Таблица 2.

б) Построить график зависимости тока базы от напряжения база-эмиттер.

в) Открыть файл 10_003, включить схему. Зарисовать входную характеристику транзистора.

рис.10_003

г) По входной характеристике найти сопротивление r вх при изменении базового тока с 10мА до 30мА. По формуле:

Записать его значение.

Эксперимент 5. Исследование каскада с общим эмиттером в области малого сигнала

а) Собрать схему рис. 10_010

Установочные параметры приборов должны соответствовать изображению.

б) Включить схему. Для установившегося режима записать результаты измерений амплитуд входного и выходного сигналов (разность фаз можно определить про помощи Боде-плоттера). По результатам измерений амплитуд входного и выходного синусоидальных напряжений вычислить коэффициент усиления усилителя по напряжению.

в) Для схемы на рисунке определить ток эмиттера. По его значению вычислить дифференциальное сопротивление rэ эмиттерного перехода. Используя найденное значение вычислить коэффициент усиления каскада по напряжению.

г) Подключить резистор R д между точкой U вх и конденсатором С 1 , разомкнув ключ (space). Включить схему. Измерить амплитуды входного и выходного напряжения. Вычислить новое значение коэффициента усиления по напряжению по результатам измерения.

д) Переместить щуп канала А осциллографа в узел U б. Снова включить схему и измерить амплитуду U б напряжения в точке U б. Вычислить коэффициент усиления по напряжению, входной ток по результатам измерения U вх и U б. По U вх и i вх вычислить входное сопротивление r вх усилителя.

е) По значению коэффициента усиления тока β, полученному в эксперименте 1 и величине дифференциального сопротивления эмиттера r э (где взять?) вычислить входное сопротивление транзистора r i . Вычислить значение r вх используя значение сопротивлений R 1 , R 2 , r i . Результаты записать.

ж) Замкнуть резистор R д между узлом U вх и конденсатором C 1 , замкнув ключ (space). Переместить щуп канала А осциллографа в узел U вх. Установить наминал резистора R 2 2кОм. Затем включить схему и измерить амплитуды входного и выходного синусоидального напряжения. Используя результаты измерений, вычислить новое значение коэффициента усиления по напряжению.

з) Используя результаты измерений амплитуды выходного синусоидального напряжения в пункте б) и пункте ж), значение сопротивления нагрузки в пункте ж), вычислить выходное сопротивление усилителя.

и) Установить наминал резистора R н = 200кОм. Переставить щуп канала В осциллографа в узел U с и включить схему. Измерить постоянную составляющую выходного сигнала и записать результат измерения.

к) Вернуть щуп канала В осциллографа в узел U out . На осциллографе установить масштаб для входа 10мВ/дел. Убрать шунтирующий конденсатор С з и включить схему. Измерить амплитуды входного и выходного синусоидального напряжения. По результатам измерений вычислить значение коэффициента усиления каскада с ОЭ с сопротивлением в цепи эмиттера по напряжению.

л) По величине сопротивления r э и R э вычислить значение коэффициента усиления усилителя с ОЭ с сопротивлением в цепи эмиттера по напряжению.

    От чего зависит ток коллектора транзистора?

    Зависит ли коэффициент β дс от тока коллектора? Если да, то в какой степени? Обосновать ответ.

    Что такое токи утечки транзистора в режиме отсечки?

    Что можно сказать по выходным характеристикам о зависимости тока коллектора от тока базы и напряжения коллектор-эмиттер?

    Что можно сказать по выходной характеристике о различии между базо-эмиттерным переходом и диодом, смещенным в прямом направлении?

    Одинаково ли значение r вх при любом значении тока эмиттера?

    Одинаково ли значение r э при любом значении тока эмиттера?

    Как отличается практическое значение сопротивления r э от вычисленного по формуле?

    Каково отличие практического и теоретического значений коэффициента усиления по напряжению?

    Как влияет входное сопротивление на коэффициент усиления по напряжению?

    какова связь между входным напряжением (узел U вх) и напряжением на базе (узел U б) при включении между ними сопротивления?

    какое влияние оказывает понижение сопротивления нагрузки на коэффициент усиления по напряжению?

    Как влияет сопротивление R э на коэффициент усиления по напряжению усилителя?

    Каково отличие практического и теоретического значений напряжений U б, U э по постоянному току?

    Почему значение коэффициента усиления по напряжению меньше еденицы?

    Велико ли значение выходного сопротивления усилителя с ОК?

    какова разность фаз входного и выходного синусоидальных сигналов?

    в чем заключено главное достоинство схемы усилителя с ОК? В чем главное назначение этой схемы?

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги: Добавить метки

Похожие публикации