Компьютерная грамотность, помощь и ремонт

Трехмерная графика. Создание реалистичных изображений изделий Построение трехмерного изображения

Не важно, насколько большим и насыщенным будет виртуальный 3D мир. Компьютер может отображать его только одним способом: помещая пиксели на 2D экран. В этой части статьи вы узнаете, как изображение на экране становится реалистичным, и как сцены становятся похожими на те, которые вы видите в реальном мире. Сначала мы посмотрим, как придается реалистичность одному объекту. Потом мы перейдем уже ко всей сцене. И напоследок, мы рассмотрим, как компьютер реализует движение: реалистичные объекты движутся с реалистичными скоростями.

Прежде чем изображение станет реалистичным, объекты проходят несколько стадий обработки. Самые важные стадии это создание формы (shape), обтягивание текстурами, освещение, создание перспективы, глубины резкости (depth of field) и сглаживания (anti-aliasing).

Создание формы

Если мы выглянем в окно, то увидим что все объекты имеют форму, они созданы из прямых и кривых линий разных размеров и положений. Точно также, при взгляде на трехмерную графическую картинку на компьютерном мониторе, мы будем наблюдать изображение, созданное из различных форм, хотя большинство из них состоят уже из прямых линий. Мы видим квадраты, прямоугольники, параллелограммы, круги и ромбы. Но больше всего мы видим треугольников. Для того чтобы составить достоверную картинку с кривыми линиями как в окружающем мире, приходится компоновать форму из множества мелких формочек. Например, человеческое тело может потребовать тысячи этих формочек. Вместе они будут образовывать структуру, называемую каркасом. Каркас очень напоминает эскиз объекта, вы можете легко идентифицировать объект по каркасу. Следующий шаг после создания формы также не менее важен: каркас должен получить поверхность.

На иллюстрации показан каркас руки, изготовленный из малого количества полигонов - всего 862

Поверхностные текстуры (surface textures)

Когда мы встречаем какую-нибудь поверхность в реальном мире, мы можем получить информацию о ней двумя способами. Мы можем посмотреть на поверхность, под разными углами, и можем потрогать ее и определить, мягкая она или твердая. В трехмерной графике мы можем только смотреть на поверхность, получая при этом всю доступную информацию. И эта информация складывается из трех составляющих:

  • Цвет: Какого поверхность цвета? Однородно ли она окрашена?
  • Текстура: Ровная ли поверхность или на ней есть вмятины, бугры, рихтовка или что-то подобное?
  • Отражающая способность: Отражает ли поверхность свет? Четкие ли отражения или они размазаны?

Один из способов придания "реальности" объекту и состоит в подборе комбинации этих трех составляющих в различных частях изображения. Посмотрите вокруг себя: ваша компьютерная клавиатура имеет отличающийся цвет/текстуру/отражающую способность от вашего стола, который в свою очередь отличается цветом/текстурой/отражающей способностью от вашей руки. Для того чтобы цвет изображения был похож на настоящий, важно чтобы компьютер мог выбирать цвет пикселя из палитры в миллионы различных цветов. Разнообразие текстур зависит как от математической модели поверхности (от кожи лягушки до желеобразного материала) так и от карт текстур (texture maps), которые накладываются на поверхности. Также необходимо заложить в объекты те качества, которые нельзя увидеть: мягкость и твердость, теплоту и холод с помощью различных комбинаций цвета, текстуры и отражающей способности. Если ошибиться хотя бы в одном из этих параметров, ощущение реальности мгновенно рассеется.


Добавление поверхности к каркасу начинает изменять
изображение от чего-то математического до картинки,
в которой мы без труда обнаруживаем руку.

Освещение

Когда вы входите в темную комнату, вы включаете свет. Вы не задумываетесь, как же свет, выходя из лампочки, распределяется по всей комнате. Но при разработке 3D графики необходимо постоянно это учитывать, потому что все поверхности, окружающие каркас, должны быть откуда-нибудь освещены. Один метод, называемый методом бегущего луча (ray-tracing), вычерчивает путь, который воображаемый луч пройдет после выхода из лампы, отражения от зеркальных поверхностей и который, в конце концов, закончится на предмете. Луч осветит его с различной интенсивностью под различными углами. Метод кажется достаточно сложным даже при построении лучей от одной лампы, но в большинстве комнат существует множество источников света: несколько ламп, окон, свечей и т.д.

Освещение играет ключевую роль в двух эффектах, придающих ощущение веса и цельности объектам: затенения (shading) и тени (shadow). Первый эффект затенения заключается в изменении интенсивности освещения объекта от одной его стороны к другой. Благодаря затенению шар выглядит круглым, высокие скулы выпирают на лице, а одеяло кажется объемным и мягким. Эти различия в интенсивности света совместно с формой усиливают иллюзию, что объект кроме высоты и ширины имеет еще и глубину. Иллюзия веса создается вторым эффектом: тенью.


Подсветка изображения не только добавляет глубину
объекту через затенение, но и "привязывает"
объект к земле посредством тени.

Оптически плотные тела при освещении отбрасывают тень. Вы можете увидеть тень на солнечных часах или посмотреть на тень дерева на тротуаре. В настоящем мире объекты и люди отбрасывают тени. Если в трехмерном мире будут присутствовать тени, то вам будет еще больше казаться, что вы смотрите через окно на настоящий мир, а не на экран с математическими моделями.

Перспектива

Слово перспектива кажется техническим термином, но на самом деле оно описывает простейший эффект, который все мы наблюдаем. Если вы встанете на обочину длинной прямой дороги и посмотрите вдаль, то вам покажется что правая и левая полоса дороги сходятся в точку на горизонте. Если по обочине посажены деревья, то чем дальше деревья находятся от наблюдателя, тем они меньше. Вы заметите, что деревья сходятся в ту же точку на горизонте, что и дорога. Если все объекты на экране будут сходиться в одну точку, то это и будет называться перспективой. Бывают, конечно, и другие варианты, но в основном в трехмерной графике используется перспектива одной точки, описанная выше.

На приведенной иллюстрации руки выглядят разделенными, но на большинстве сцен одни объекты находятся впереди и частично блокируют вид на другие объекты. Для таких сцен программное обеспечение должно не только просчитать относительный размер объектов, но и учитывать информацию, какие объекты закрывают другие и насколько сильно. Наиболее часто для этого используется Z-буфер (Z-Buffer). Свое имя этот буфер получил от названия оси Z, или воображаемой линии, идущей за экран через сцену к горизонту. (Две другие оси - это ось X, измеряющая ширину сцены, и ось Y, измеряющая высоту сцены).

Z-буфер присваивает каждому полигону номер в зависимости от того, насколько близко к переднему краю сцены располагается объект, содержащий этот полигон. Обычно меньшие номера присваиваются ближайшим к экрану полигонам, а большие номера - полигонам, примыкающим к горизонту. Например, 16-битный Z-буфер присвоит ближайшему к экрану объекту номер -32.768, а самому удаленному - 32.767.

В настоящем мире, наши глаза не могут видеть объекты закрытые другими, поэтому у нас нет проблем в определении видимых объектов. Но эти проблемы постоянно возникают перед компьютером, и он вынужден непосредственно их решать. При создании каждого объекта, его Z-значение сравнивается со значением других объектов, занимающих те же области по координатам X и Y. Объект с самым маленьким Z-значением будет полностью прорисовываться, другие же объекты с большими значениями будут прорисованы лишь частично. Таким образом, мы не видим фоновых объектов, выступающих через персонажей. Так как Z-буфер задействуется перед полной прорисовкой объектов, скрытые за персонажа части сцены не будут прорисовываться вообще. Это ускоряет графическую производительность.

Глубина резкости

Другой оптический эффект, глубина резкости, также успешно используется в 3D графике. Будем использовать тот же пример с деревьями, посаженными по обочине дороги. По мере удаления деревьев от наблюдателя будет происходить другой интересный эффект. Если вы посмотрите на ближайшие к вам деревья, то удаленные деревья будут не в фокусе. Особенно это видно при просмотре фотографии или видеоролика с теми же деревьями. Режиссеры и компьютерные аниматоры используют этот эффект в двух целях. Первая состоит в усилении иллюзии глубины наблюдаемой сцены. Конечно же, компьютер может прорисовывать каждый объект сцены точно в фокусе, независимо от его удаления. Но так как в реальном мире эффект глубины резкости всегда присутствует, то прорисовка всех предметов в фокусе приведет к нарушению иллюзии реальности сцены.

Вторая причина использования этого эффекта заключается в привлечении вашего внимания к нужным предметам или актерам. Например, для усиления вашего внимания к герою фильма, режиссер будет использовать эффект малой глубины резкости (shallow depth of field), когда только один актер будет находиться в фокусе. С другой стороны, сцены, которые должны потрясти вас величием природы, используют эффект большой глубины резкости (deep depth of field) чтобы дать как можно больше предметов в фокусе.

Сглаживание (anti-aliasing)

Сглаживаение - это еще одна технология, призванная обмануть зрение. Цифровые графические системы очень хороши для создания вертикальных или горизонтальных линий. Но когда появляются диагонали и кривые (а они появляются очень часто в реальном мире), компьютер прорисовывает линии с характерными "лесенками" вместо ровных краев. Чтобы убедить ваши глаза в том, что они видят гладкую линию или кривую, компьютер добавляет вокруг линии пиксели с различными оттенками цвета линии. Эти "серые" пиксели создают иллюзию отсутствия "ступенек". Такой процесс добавления пикселей для обмана зрения называется сглаживанием, и он является одной из технологий, отличающих компьютерную 3D графику от "ручной" графики. Задачи сохранения линий и добавления нужного количества "сглаживающих" цветов являются еще одним сложным делом для компьютера при создании 3D анимации на вашем дисплее.

Представить, как впишется объект в существующую застройку. Просматривать различные варианты исполнения проекта очень удобно по трехмерной модели. В частности, можно менять материалы и покрытие (текстуры) элементов проекта, проверять освещенность отдельных участков (в зависимости от времени суток), размещать различные элементы интерьера и т.д.

В отличие от ряда САПР, использующих для визуализации и анимации дополнительные модули или сторонние программы, в MicroStation встроены средства для создания фотореалистичных изображений (BMP, JPG, TIFF, PCX и др.), а также для записи анимационных роликов стандартных форматов (FLI, AVI) и набора покадровых картинок (BMP, JPG, TIFF и др.).

Создание реалистичных изображений

Создание фотореалистичных изображений начинается с присвоения материалов (текстур) различным элементам проекта. Каждая текстура применяется ко всем элементам одинакового цвета, лежащим в одном и том же слое. Учитывая, что максимальное количество слоев — 65 тыс., а цветов — 256, можно предположить, что индивидуальный материал реально применить к любому элементу проекта.

Программа предоставляет возможности редактирования любой текстуры и создания новой, основанной на растровом изображении (BMP, JPG, TIFF и др.). При этом для текстуры можно использовать два изображения, одно из которых отвечает за рельефность, а другое — за фактуру материала . Как рельефность, так и фактура обладают различными параметрами размещения на элемент, как-то: масштаб, угол поворота, смещение, способ заполнения неровных поверхностей. Кроме того, рельефность имеет параметр «высота» (изменяемый в диапазоне от 0 до 20), а фактура, в свою очередь, обладает весом (изменяемым в диапазоне от 0 до 1).

Кроме рисунка, у материала существуют следующие настраиваемые параметры: рассеяние, диффузия, глянец, полировка, прозрачность, отражение, преломление, базовый цвет, цвет блика, способность материала оставлять тени.

Отображение текстуры предварительно можно просмотреть на примере стандартных трехмерных тел либо на любом элементе проекта, при этом можно использовать несколько типов затенения элемента. Простые средства создания и редактирования текстур позволяют получить практически любой материал.

Не менее важный аспект для создания реалистических изображений — способ визуализации (рендеринга). MicroStation поддерживает следующие, достаточно известные способы затенения: удаление невидимых линий, закраска невидимых линий, постоянное затенение, плавное затенение, затенение по Фонгу, рейтрейсинг, радиосити, трассировка частиц. При визуализации изображение можно сгладить (убрать ступенчатость), а также создать стереокартинку, которую можно просмотреть, используя очки со специальными светофильтрами.

Существует ряд настроек качества отображения (соответственно скорости обработки изображения) для способов рейтрейсинга, радиосити, трассировки частиц. Для ускорения обработки графической информации MicroStation поддерживает методы графического ускорения — технологию QuickVision. Для просмотра и редактирования созданных изображений также существуют встроенные средства модификации, поддерживающие следующие стандартные функции (которые, конечно, не могут конкурировать с функциями специализированных программ): гамма-коррекция, регулировка оттенков, негатив, размывка, цветовой режим, обрезка, изменение размера, поворот, зеркальное отображение, конвертация в иной формат данных.

При создании реалистичных картинок немалую часть времени занимают размещение и управление источниками света. Источники света подразделяются на глобальное и местное освещение . Глобальное освещение , в свою очередь, состоит из рассеянного света, вспышки, солнечного освещения, света неба. А для солнца, наряду с яркостью и цветом, устанавливается угол азимута и угол над горизонтом. Данные углы могут автоматически вычисляться по указанному географическому положению объекта (в любой указанной на карте мира точке земного шара), а также по дате и времени рассмотрения объекта. Свет неба зависит от облачности, качества (непрозрачности) воздуха и даже от отражения от земли.

Местные источники света могут быть пяти видов: удаленный, точечный, конический, поверхностный, проем для неба. Каждый источник может обладать следующими свойствами: цвет, сила света, интенсивность, разрешение, тень, ослабление на определенном расстоянии, угол конуса и т.д.

Источники света могут помочь в определении неосвещенных участков объекта, где необходимо ставить дополнительные освещение.

Для просмотра элементов проекта с определенного ракурса и для произвольного движения вида по всему файлу используются камеры. При помощи клавиш управления клавиатуры и мышки можно задать девять типов движения камеры: полет, поворот, снижение, скольжение, обход, вращение, плавание, перемещение на тележке, наклон. По четыре различных типа движения можно подключить на клавиатуру и мышь (переключаются режимы удерживанием клавиш Shift, Ctrl, Shift + Ctrl).

Камеры дают возможность осмотреть объект с разных ракурсов и заглянуть внутрь. Варьируя параметры камеры (фокусное расстояние, угол объектива), можно изменять перспективу вида.

Для создания более реалистичных изображений предусмотрена возможность подключения фонового рисунка, например фотоснимка существующего ландшафта .

Вы, наверное, читаете эту статью на экране монитора компьютера или мобильного устройства - дисплей, который имеет реальные размеры, высоту и ширину. Но когда вы смотрите, например, мультфильм История Игрушек или играете в игру Tomb Raider, вы лицезреете трёхмерный мир. Одной из самых удивительных вещей трехмерного мира является то, что мир, который вы видите, может быть миром, в котором мы живем, миром, в котором мы будем жить завтра, или миром, который живет только в умах создателей фильма или игры. И все эти миры могут появиться только на одном экране - это как минимум интересно.
Как компьютер делает так, что обманывает наши глаза и мы думаем, что смотря на плоский экран видим глубину представленной картины? Как разработчики игр делают так, что мы видим реальных персонажей, передвигающихся в реальном ландшафте? Сегодня я расскажу вам о визуальных трюках, используемых графическими дизайнерами, и о том, как всё это разрабатывается и кажется нам настолько простым. На самом деле всё не просто, и чтобы узнать, что из себя представляет 3D-графика, ступайте под кат - там вас ждёт увлекательная история, в которую, я уверен, вы погрузитесь с небывалым удовольствием.

Что делает изображение трехмерным?

Изображение, которое имеет или кажется, что имеет высоту, ширину и глубину является трехмерным (3D). Картинка, которая имеет высоту и ширину, но не глубину является двумерной (2D). Напомните-ка мне, где вы встречаете двумерные изображения? - Практически везде. Вспомните даже обычный символ на двери туалета, обозначающий кабинку для того или иного пола. Символы спроектированы таким образом, что вы можете распознать их и узнать с первого взгляда. Вот почему они используют только самые основные формы. Более детальная информация о каком-либо символе может рассказать вам, какую одежду носит этот маленький человечек, весящий на двери, или цвет волос, например, символики двери женского туалета. Это одно из основных отличий между тем, как используется трехмерная и двумерная графики: 2D-графика проста и запоминаема, а 3D-графика использует больше деталей и вмещает в казалось бы обычный объект значительно больше информации.

Например, треугольники имеют три линии и три угла - всё, что нужно, чтобы рассказать из чего состоит треугольник и вообще что представляет собой. Однако посмотрите на треугольник с другой стороны - пирамида - является трехмерной структурой с четырьмя треугольными сторонами. Обратите внимание, что в этом случае имеется уже шесть линий и четыре угла - из этого и состоит пирамида. Видите, как обычный объект может превратится в трехмерный и вместить в себя гораздо больше информации, необходимой, чтобы рассказать историю треугольника или пирамиды.

На протяжении сотен лет художники использовали некоторые визуальные трюки, которые могут сделать плоское 2D-изображение настоящим окном в реальный трехмерный мир. Вы можете увидеть подобный эффект на обычной фотографии, которые вы можете сканировать и просмотреть на мониторе компьютера: объекты на фотографии кажутся меньше, когда они дальше; объекты же, близкие к объективу камеры, находятся в фокусе, значит, соответственно, всё, что за объектами в фокусе - размыто. Цвета, как правило, менее яркие, если объект не так близок. Когда мы говорим о 3D-графике на компьютерах сегодня - мы говорим об изображениях, которые движутся.

Что такое 3D-графика?

Для многих из нас игры на персональном компьютере, мобильном устройстве или вообще продвинутая игровая система - самый яркий пример и распространенный способ, благодаря которому мы можем созерцать трехмерную графику. Все эти игры, крутые фильмы, созданные при помощи компьютера, должны пройти три основных шага по созданию и представлению реалистичных трехмерных сцен:

  1. Создание виртуального 3D-мира
  2. Определение того, какая часть мира будет показана на экране
  3. Определение того, как пиксель на экране будет выглядеть, чтобы полное изображение казалось максимально реалистичным
Создание виртуального 3D-мира
Виртуальный 3D-мир - это, понятное дело, не то же самое, что и реальный мир. Создание виртуального 3D-мира - комплексная работа по компьютерной визуализации мира, схожего с реальным, для создания которого используется большое количество инструментов и который подразумевает крайне высокую детализацию. Возьмите, к примеру, очень маленькую часть реального мира - свою руку и рабочий стол под ней. Ваша рука обладает особенными качествами, которые определяют, как она может двигаться и выглядеть внешне. Суставы пальцев сгибаются только в сторону ладони, а не противоположно от неё. Если вы ударите по столу, то с ним никаких действий не произойдёт - стол тверд. Соответственно, ваша рука не может пройти через ваш рабочий стол. Вы можете доказать, что это утверждение истинно, смотря на что-то естественное, а в виртуальном трехмерном мире дела обстоят совсем по-другому - в виртуальном мире нет природы, нет таких естественных вещей, как ваша рука, например. Предметы в виртуальном мире полностью синтетические - это единственные свойства, данные им с помощью программного обеспечения. Программисты используют специальные инструменты и разрабатывают виртуальные 3D-миры с особой тщательностью, чтобы всё в них всегда вело себя определённым образом.

Какая часть виртуального мира показывается на экране?
В любой момент экран показывает только крошечную часть виртуального трехмерного мира, созданного для компьютерной игры. То, что показывается на экране - определенные комбинации способов, которыми определяется мир, где вы принимаете решение куда пойти и что посмотреть. Независимо от того, куда вы идёте - вперёд или назад, вверх или вниз, влево или вправо - виртуальный трехмерный мир вокруг вас определяет то, что вы видите, находясь на определенной позиции. То, что вы видите, имеет смысл от одной сцены к другой. Если вы смотрите на объект с того же расстояния, вне зависимости от направления, он должен выглядеть высоко. Каждый объект должен выглядеть и двигаться таким образом, чтобы вы верили в то, что он имеет ту же массу, что и реальный объект, что он такой же твёрдый или мягкий, как и реальный объект, и так далее.


Программисты, которые пишут компьютерные игры, прикладывают огромные усилия к разработке виртуальных 3D-миров и делают их так, чтобы вы могли блуждать в них, не сталкиваясь ни с чем, что заставляло бы вас думать «Это не могло произойти в этом мире!». Последней вещью, которую вы хотите видеть - два твёрдых объекта, которые могут пройти прямо друг через друга. Это - резкое напоминание о том, что всё, что вы видите, является притворством. Третий шаг включает в себя ещё как минимум столько же вычислений, сколько и другие два шага и должны происходить так же в реальном времени.

Освещение и перспектива

Когда вы входите в комнату, вы включаете свет. Вы, наверное, не тратите много времени на раздумья, как же это на самом деле работает и как свет исходит от лампы, распространяясь по комнате. Но люди, работающие с трехмерной графикой, должны думать об этом, потому что все поверхности, окружающие каркасы и прочие подобные вещи должны быть освещены. Один из методов - трассировка лучей - предполагает участки пути, которые берут лучи света, покидая лампочку, отскакивая от зеркал, стен и других отражающих поверхностей и, наконец, приземляются на предметы с различной интенсивностью от различных углов. Это сложно, ведь от одной лампочки может быть один луч, но в большинстве помещений используется несколько источников света - несколько светильников, потолочные светильники (люстры), торшеры, окна, свечи и так далее.

Освещение играет ключевую роль в двух эффектах, которые придают внешний вид, вес и внешнюю прочность объектов: затемнение и тени. Первый эффект, затемнение, представляет собой место, где с одной стороны на объект падает больше света, чем с другой. Затемнение придает объекту множество натурализма. Эта штриховка - то, что делает сгибы в одеяле глубокими и мягкими, а высокие скулы кажутся поразительными. Эти различия в интенсивности света укрепляют общую иллюзию, что у объекта есть глубина, а также высота и ширина. Иллюзия массы происходит от второго эффекта - тени.

Твердые тела отбрасывают тени, когда свет падает на них. Вы можете увидеть это, когда вы наблюдаете тень, которую солнечные часы или дерево бросают на тротуар. Поэтому мы привыкли видеть реальные предметы и людей отбрасывающих тени. В трехмерном изображении тень, опять же, укрепляет иллюзию, создавая эффект присутствия в реальном мире, а не в экране математически произведенных форм.

Перспектива
Перспектива - одно слово, способное значить многое, но фактически описывающее простой эффект, который видели все. Если вы стоите на стороне длинной, прямой дороги и смотрите вдаль, кажется, как будто обе стороны дороги сходятся в одной точке на горизонте. Кроме того, если деревья стоят рядом с дорогой, деревья дальше будут выглядеть меньше, чем деревья близкие к вам. На самом деле будет похоже, что деревья сходятся в определённой точке горизонта, сформированной около дороги, но это не так. Когда все объекты на сцене будут выглядеть в конечном итоге сходящимися в одной точке на расстоянии - это перспектива. Есть множество вариаций этого эффекта, но большинство трехмерной графики использует единую точку зрения, которая только что была описана мною.

Глубина резкости


Другим оптическим эффектом, успешно использующимся для создания графических трехмерных объектов, является глубина резкости. Используя мой пример с деревьями, помимо вышеописанного происходит ещё одна интересная вещь. Если вы посмотрите на деревья, находящиеся близко по отношению к вам, деревья, расположенные дальше, как представляется, будут не в фокусе. Кинорежиссеры и компьютерные аниматоры используют данный эффект, глубину резкости, для двух целей. Первая заключается в укреплении иллюзии глубины в рассматриваемой пользователем сцене. Вторая цель - использование режиссерами глубины резкости сосредотачивает свое внимание на предметах или актерах, которые считаются наиболее важными. Чтобы обратить ваше внимание не героиню фильма, например, может использоваться «малая глубина резкости», где только актер находится в фокусе. Сцена, которая разработана таким образом, чтобы произвести на вас полное впечатление, наоборот будет использовать «глубокую глубину резкости», чтобы как можно больше объектов было в фокусе и таким образом заметно зрителю.

Сглаживание


Ещё один эффект, который также полагается на обман глаз - сглаживание. Цифровые графические системы очень хорошо подходят для создания четких линий. Но бывает и такое, что оказывают верх диагональные линии (они же довольно часто появляются в реальном мире, и тогда компьютер воспроизводит линии, которые больше напоминают лесенки (я думаю, что вы знаете, что такое лесенка при детальном рассмотрении объекта изображения)). Таким образом, чтобы обмануть свой глаз при виде гладкой кривой или линии, компьютер может добавить определённые оттенки цвета в строки пикселей, окружающих линию. Этим «серым цветом» пикселей компьютер как раз-таки и обманывает ваши глаза, а вы, тем временем, думаете, что зубчатых ступенек больше нет. Этот процесс добавления дополнительных цветных пикселей для обмана глаз называется сглаживанием, и он является одним из методов, которые создаются вручную компьютерной трехмерной графикой. Другой сложной задачей для компьютера является создание трехмерной анимации, пример которой будет представлен вам в следующем разделе.

Реальные примеры

Когда все трюки, описанные мною выше, используются вместе для создания потрясающе реальной сцены - итог соответствует трудам. Последние игры, фильмы, машинно-генерируемые объекты сочетаются с фотографическими фонами - это усиливает иллюзию. Вы можете увидеть удивительные результаты, когда вы сравните фотографии и компьютерную сцену.

На фотографии выше представлен обычный офис, для входа в который используется тротуар. В одной из следующих фотографий на тротуар был положен простой однотонный мяч, после чего эту сцену сфотографировали. Третья фотография представляет из себя уже использование компьютерной графической программы, которая и создала на самом деле несуществующий на этой фотографии мяч. Можете ли вы сказать, что есть какие-то существенные различия между двумя этими фотографиями? Думаю, что нет.

Создание анимации и видимости «живого действия»

До сих пор мы рассматривали инструменты, которые заставляют любое цифровое изображение казаться более реалистичным - является ли изображение стиллом или частью анимационной последовательности. Если это анимационная последовательность, то программисты и дизайнеры будут использовать ещё больше различных визуальных уловок, чтобы создать видимость «живого действия», а не изображений, созданных компьютером.

Сколько кадров в секунду?
Когда вы идете на шикарный блокбастер в местное кино, последовательность изображений, называемых кадрами работает в количестве 24 кадра в секунду. Так как наша сетчатка сохраняет изображение немного дольше, чем 1/24 секунды, глаза большинства людей будут смешивать кадры в один непрерывный образ движения и действия.

Если вы не понимаете, о чём я только что написал, то посмотрим на это с другой стороны: это означает, что каждый кадр кинофильма - фотография, сделанная на выдержке (экспозиции) 1/24 секунды. Таким образом, если вы посмотрите на один из многочисленных кадров фильма о гонках, вы увидите, что некоторые гоночные автомобили «размываются», потому что они проехали с большой скоростью в то время, пока у камеры открыт затвор. Данная размытость вещей, создающаяся за счёт быстрого движения - то, что мы привыкли видеть, и это часть того, что делает изображение реальным для нас, когда мы смотрим на него на экране.


Однако, цифровые трехмерные изображения - это ведь не фотографии как ни крути, поэтому никакого эффекта размывания не происходит, когда объект перемещается в кадре во время съёмки. Чтобы сделать изображения более реалистичными, размывание должно быть явно добавлено программистами. Некоторые дизайнеры считают, что для «преодоления» этого отсутствия естественного размытия требуется более 30 кадров в секунду, посему и подтолкнули игры выйти на новый уровень - 60 кадров в секунду. Хотя это и позволяет каждому отдельному изображению выглядеть в мельчайших подробностях и отображать движущиеся объекты в меньших приращениях, оно существенно увеличивает количество кадров для данной анимационной последовательности действий. Есть и другие определенные куски изображений, где точный рендеринг на компьютере должен быть принесен в жертву ради реализма. Это относится как к подвижным, так и неподвижным объектам, но это уже совсем другая история.

Подойдем к концу


Компьютерная графика продолжает удивлять весь мир, создавая и генерируя самые разнообразные действительно реалистично движущиеся и недвижущиеся объекты и сцены. С 80 колонок и 25 линий монохромного текста графика значительно продвинулась, и результат очевиден - миллионы людей играют в игры и проводят самые различные симуляции с сегодняшней технологией. Новые 3D-процессоры также дадут о себе знать - благодаря им мы сможем в буквальном смысле исследовать другие миры и испытывать то, чего мы никогда не осмеливались попробовать в реальной жизни. Напоследок вернемся к примеру с мячом: как создавалась эта сцена? Ответ прост: изображение имеет сгенерированный компьютером мяч. Нелегко сказать, который из двух является подлинным, не так ли? Наш мир удивителен и мы должны соответствовать ему. Надеюсь, вам было интересно и вы узнали для себя очередную порцию интересной информации.

В отличие от двумерной анимации, где многое может быть нарисовано от руки, в трехмерной объекты слишком гладкие, их форма слишком правильная и движутся они по слишком "геометрическим" траекториям. Правда, эти проблемы преодолимы. В анимационных пакетах улучшаются средства визуализации, обновляются инструменты для создания спецэффектов и увеличиваются библиотеки материалов. Для создания "неровных" объектов, например, волос или дыма, используется технология формирования объекта из множества частиц. Вводится инверсная кинематика и другие техники оживления, возникают новые методы совмещения видеозаписи и анимационных эффектов, что позволяет сделать сцены и движения более реалистичными. Кроме того, технология открытых систем позволяет работать сразу с несколькими пакетами. Можно создать модель в одном пакете, разрисовать ее в другом, оживить в третьем, дополнить видеозаписью в четвертом. И, наконец, функции многих профессиональных пакетов можно сегодня расширить с помощью дополнительных приложений, написанных специально для базового пакета.

3D Studio и 3D Studio MAX

Один из самых известных пакетов 3D-анимации на IBM - это 3D Studio фирмы Autodesk. Программа работает под DOS, обеспечивает весь процесс создания трехмерного фильма: моделирование объектов и формирование сцены, анимацию и визуализацию, работу с видео. Кроме того, существует широкий спектр прикладных программ (IPAS-процессов), написанных специально для 3D Studio. Новая программа той же фирмы под названием 3D Studio MAX для Windows NT создавалась в течение нескольких последних лет и претендует на роль конкурента мощным пакетам для рабочих станций SGI. Интерфейс новой программы един для всех модулей и обладает высокой степенью интерактивности. 3D Studio MAX реализует расширенные возможности управления анимацией, хранит историю жизни каждого объекта и позволяет создавать разнообразные световые эффекты, поддерживает 3D-акселераторы и имеет открытую архитектуру, то есть позволяет третьим фирмам включать в систему дополнительные приложения.



TrueSpace, Prisms, Three-D, RenderMan, Crystal Topas

Electric Image, SoftImage

Для создания трехмерной анимации на компьютерах IBM и Macintosh удобно пользоваться и пакетом Electric Image Animation System, включающим большой комплекс анимационных средств, спецэффекты, инструментарий для работы со звуком и генератор шрифтов с настраиваемыми параметрами. Хотя у этой программы нет средств моделирования, но зато есть возможность импорта свыше тридцати различных форматов моделей. Пакет также поддерживает работу с иерархическими объектами и средствами инверсной кинематики. В свою очередь, программа Softimage 3D фирмы Microsoft работает на платформах SGI и Windows NT. Она поддерживает моделирование на базе полигонов и сплайнов, создание спецэффектов, работу с частицами и технологию переноса движения с живых актеров на компьютерных персонажей.

3D-моделирование и визуализация необходимы при производстве продуктов или их упаковки, а также при создании прототипов изделий и создании объемной анимации.

Таким образом, услуги по 3D-моделированию и визуализации предоставляются тогда, когда:

  • нужна оценка физических и технических особенностей изделия еще до его создания в оригинальном размере, материале и комплектации;
  • необходимо создать 3D-модель будущего интерьера.

В таких случаях вам точно придется прибегнуть к услугам специалистов в области 3д-моделирования и визуализации.

3D-модели - неотъемлемая составляющая качественных презентаций и технической документации, а также - основа для создания прототипа изделия. Особенность нашей компании - в возможности проведения полного цикла работ по созданию реалистичного 3D-объекта: от моделирования и до прототипирования. Поскольку все работы можно провести в комплексе, это существенно сокращает время и затраты на поиск исполнителей и постановку новых технических заданий.

Если речь идет о продукте, мы поможем вам выпустить его пробную серию и наладить дальнейшее производство, мелкосерийное или же промышленных масштабов.

Определение понятий «3D-моделирование» и «визуализация»

Трехмерная графика или 3D-моделирование - компьютерная графика, сочетающая в себе приемы и инструменты, необходимые для создания объемных объектов в техмерном пространстве.

Под приемами стоит понимать способы формирования трехмерного графического объекта - расчет его параметров, черчение «скелета» или объемной не детализированной формы; выдавливание, наращивание и вырезание деталей и т.д.

А под инструментами - профессиональные программы для 3D-моделирования. В первую очередь - SolidWork, ProEngineering, 3DMAX, а также некоторые другие программы для объемной визуализации предметов и пространства.

Объемный рендеринг - это создание двухмерного растрового изображения на основе построенной 3d-модели. По своей сути, это максимально реалистичное изображение объемного графического объекта.

Области применения 3D-моделирования :

  • Реклама и маркетинг

Трехмерная графика незаменима для презентации будущего изделия. Для того, чтобы приступить к производству необходимо нарисовать, а затем создать 3D-модель объекта. А, уже на основе 3D-модели, с помощью технологий быстрого прототипирования (3D-печать, фрезеровка, литье силиконовых форм и т.д.), создается реалистичный прототип (образец) будущего изделия.

После рендеринга (3D-визуализации), полученное изображение можно использовать при разработке дизайна упаковки или при создании наружной рекламы , POS-материалов и дизайна выставочных стендов.

  • Городское планирование

С помощью трехмерной графики достигается максимально реалистичное моделирование городской архитектуры и ландшафтов - с минимальными затратами. Визуализация архитектуры зданий и ландшафтного оформления дает возможность инвесторам и архитекторам ощутить эффект присутствия в спроектированном пространстве. Что позволяет объективно оценить достоинства проекта и устранить недостатки.

  • Промышленность

Современное производство невозможно представить без допроизводственного моделирования продукции. С появлением 3D-теxнологий производители получили возможность значительной экономии материалов и уменьшения финансовых затрат на инженерное проектирование. С помощью 3D-моделирования дизайнеры-графики создают трехмерные изображения деталей и объектов, которые в дальнейшем можно использовать для создания пресс-форм и прототипов объекта.

  • Компьютерные игры

Технология 3D при создании компьютерных игр используется уже более десяти лет. В профессиональных программах опытные специалисты вручную прорисовывают трехмерные ландшафты, модели героев, анимируют созданные 3D-объекты и персонажи, а также создают концепт-арты (концепт-дизайны).

  • Кинематограф

Вся современная киноиндустрия ориентируется на кино в формате 3D. Для подобных съемок используются специальные камеры, способные снимать в 3D-формате. Кроме того, с помощью трехмерной графики для киноиндустрии создаются отдельные объекты и полноценные ландшафты.

  • Архитектура и дизайн интерьеров

Технология 3д-моделирования в архитектуре давно зарекомендовала себе с наилучшей стороны. Сегодня создание трехмерной модели здания является незаменимым атрибутом проектирования. На основании 3d модели можно создать прототип здания. Причем, как прототип, повторяющий лишь общие очертания здания, так и детализированную сборную модель будущего строения.+

Что же касается дизайна интерьеров, то, с помощью технологии 3d-моделирования, заказчик может увидеть, как будет выглядеть его жилище или офисное помещение после проведения ремонта.

  • Анимация

С помощью 3D-графики можно создать анимированного персонажа, «заставить» его двигаться, а также, путем проектирования сложных анимационных сцен, создать полноценный анимированный видеоролик.

Этапы разработки 3D-модели

Разработка 3D-модели осущеcтвляется в несколько этапов :

1. Моделирование или создание геометрии модели

Речь идет о создании трехмерной геометрической модели, без учета физических свойств объекта. В качестве приемов используется:

  • выдавливание;
  • модификаторы;
  • полигональное моделирование;
  • вращение.

2. Текстурирование объекта

Уровень реалистичности будущей модели напрямую зависит от выбора материалов при создании текстур. Профессиональные программы для работы с трехмерной графикой практически не ограничены в возможностях для создания реалистичной картинки.

3. Выставление света и точки наблюдения

Один из самых сложных этапов при создании 3D-модели. Ведь именно от выбора тона света, уровня яркости, резкости и глубины теней напрямую зависит реалистичное восприятие изображения. Кроме того, необходимо выбрать точку наблюдения за объектом. Это может быть вид с высоты птичьего полета или масштабирование пространства с достижением эффекта присутствия в нем - путем выбора вида на объект с высоты человеческого роста.+

4. 3D-визуализация или рендеринг

Завершающий этап 3D-моделирования. Он заключается в детализации настроек отображения 3D-модели. То есть добавление графических спецэффектов, таких, как блики, туман, сияние и т.д. В случае видео-рендеринга, определяются точные параметры 3D-анимации персонажей, деталей, ландшафтов и т.п. (время цветовых перепадов, свечения и др.).

На этом же этапе детализируются настройки визуализации: подбирается нужное количество кадров в секунду и расширение итогового видео (например, DivX, AVI, Cinepak, Indeo, MPEG-1, MPEG-4, MPEG-2, WMV и т.п.). В случае необходимости получить двухмерное растровое изображение, определяется формат и разрешение изображения, в основном - JPEG, TIFF или RAW.

5. Постпродакшн

Обработка отснятых изображений и видео с помощью медиа-редакторов - Adobe Photoshop, Adobe Premier Pro (или Final Cut Pro/ Sony Vegas), GarageBand, Imovie, Adobe After Effects Pro, Adobe Illustrator, Samplitude, SoundForge, Wavelab и др.

Постпродакшн заключается в придании медиа-файлам оригинальных визуальных эффектов, цель которых - взбудоражить сознание потенциального потребителя: впечатлить, вызвать интерес и запомниться на долго!

3D-моделирование в литейном производстве

В литейном производстве 3D-моделирование постепенно становится незаменимой технологической составляющей процесса создания изделия. Если речь идет о литье в металлические пресс формы, то 3D-модели таких пресс-форм создаются с помощью технологий 3D-моделирования, а также 3D-прототипирования.

Но не меньшую популярность сегодня набирает литье в силиконовые формы. В данном случае - 3D-моделирование и визуализация помогут вам создать прототип объекта, на основе которого будет сделана форма из силикона либо другого материала (дерево, полиуретан, алюминий и т.д.).

Методы 3D-визуализации (рендеринг)

1. Растеризация.

Один из самых простых методов рендеринга. При его использовании не учитываются дополнительные визуальные эффекты (например, цвет и тень объекта относительно точки наблюдения).

2. Рейкастинг.

3D-модель осматривается с определенной, заранее заданной точки - с высоты человеческого роста, высоты птичьего полета и т.д. Из точки наблюдения направляются лучи, которые определяют светотени объекта, когда происходит его рассмотрения в привычном формате 2D.

3. Трассировка лучей.

Данный метод рендеринга подразумевает то, что, при попадании на поверхность, луч разделяется на три компонента: отраженный, теневой и преломленный. Собственно это и формирует цвет пиксела. Помимо этого, от количества разделений напрямую зависит реалистичность изображения.

4. Трассировка пути.

Один из самых сложных методов 3D-визуализации. При использовании данного метода 3D-рендеринга распространение световых лучей максимально приближено к физическим законам распространения света. Именно это и обеспечивает высокую реалистичность конечного изображения. Стоит отметить, что данный метод отличается ресурсоемкостью.

Наша компания предоставит вам полный спектр услуг в области 3D-моделирования и визуализации. Мы располагаем всеми техническими возможностями для создания 3D-моделей различной сложности. А также имеем большой опыт работы в 3d-визуализации и моделировании, в чем можно лично убедиться, изучив наше портфолио, или другие наши работы, пока не представленные на сайте (по запросу).

Бренд-агентство KOLORO окажет вам услуги по выпуску пробной серии продукции или ее мелкосерийному производству . Для этого наши специалисты создадут максимально реалистичную 3D-модель нужного вам объекта (упаковки, логотипа, персонажа, 3D-образца любого изделия, формы для литья и мн. др.), на основе которого будет создан прототип изделия. Стоимость нашей работы напрямую зависит от сложности объекта 3D-моделирования и обсуждается в индивидуальном порядке.

Похожие публикации